【題目】如圖,矩形AOCB的頂點(diǎn)A、C分別位于x軸和y軸的正半軸上,線(xiàn)段OA、OC的長(zhǎng)度滿(mǎn)足方程|x﹣15|+ =0(OA>OC),直線(xiàn)y=kx+b分別與x軸、y軸交于M、N兩點(diǎn),將△BCN沿直線(xiàn)BN折疊,點(diǎn)C恰好落在直線(xiàn)MN上的點(diǎn)D處,且tan∠CBD=

(1)求點(diǎn)B的坐標(biāo);
(2)求直線(xiàn)BN的解析式;
(3)將直線(xiàn)BN以每秒1個(gè)單位長(zhǎng)度的速度沿y軸向下平移,求直線(xiàn)BN掃過(guò)矩形AOCB的面積S關(guān)于運(yùn)動(dòng)的時(shí)間t(0<t≤13)的函數(shù)關(guān)系式.

【答案】
(1)解:∵|x﹣15|+ =0,

∴x=15,y=13,

∴OA=BC=15,AB=OC=13,

∴B(15,13)


(2)解:如圖1,過(guò)D作EF⊥OA于點(diǎn)E,交CB于點(diǎn)F,

由折疊的性質(zhì)可知BD=BC=15,∠BDN=∠BCN=90°,

∵tan∠CBD= ,

= ,且BF2+DF2=BD2=152,解得BF=12,DF=9,

∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,

∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,

∴∠ONM=∠CBD,

=

∵DE∥ON,

= = ,且OE=3,

= ,解得OM=6,

∴ON=8,即N(0,8),

把N、B的坐標(biāo)代入y=kx+b可得 ,解得

∴直線(xiàn)BN的解析式為y= x+8


(3)解:設(shè)直線(xiàn)BN平移后交y軸于點(diǎn)N′,交AB于點(diǎn)B′,

當(dāng)點(diǎn)N′在x軸上方,即0<t≤8時(shí),如圖2,

由題意可知四邊形BNN′B′為平行四邊形,且NN′=t,

∴S=NN′OA=15t;

當(dāng)點(diǎn)N′在y軸負(fù)半軸上,即8<t≤13時(shí),設(shè)直線(xiàn)B′N(xiāo)′交x軸于點(diǎn)G,如圖3,

∵NN′=t,

∴可設(shè)直線(xiàn)B′N(xiāo)′解析式為y= x+8﹣t,

令y=0,可得x=3t﹣24,

∴OG=24,

∵ON=8,NN′=t,

∴ON′=t﹣8,

∴S=S四邊形BNN′B′﹣SOGN′=15t﹣ (t﹣8)(3t﹣24)=﹣ t2+39t﹣96;

綜上可知S與t的函數(shù)關(guān)系式為S=


【解析】(1)由兩個(gè)非負(fù)數(shù)的和為0,每個(gè)非負(fù)數(shù)均為0可得x=15,y=13,即B(15,13);(2)要利用三角函數(shù)tan∠CBD= ,就須過(guò)D作垂線(xiàn),把∠CBD放在直角三角形中,再由平行線(xiàn)分線(xiàn)段成比例列出方程,求出OM=6,利用待定系數(shù)法求出直線(xiàn)BN的解析式;(3)須動(dòng)手操作平移BN,可發(fā)現(xiàn)掃過(guò)的圖形分為平行四邊形和五邊形兩種,當(dāng)NN′B′為平行四邊形時(shí)面積利用底高;當(dāng)掃過(guò)面積為五邊形時(shí),用作差法S四邊形BNN′B′﹣SOGN′,用t 的代數(shù)式表示兩部分面積即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)關(guān)系式(用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車(chē),B騎電動(dòng)車(chē),圖中DE,OC分別表示AB離開(kāi)甲地的路程skm)與時(shí)間th)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問(wèn)題.

1AB后出發(fā)幾個(gè)小時(shí)?B的速度是多少?

2)在B出發(fā)后幾小時(shí),兩人相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校的平面示意圖如圖所示,實(shí)驗(yàn)樓所在位置的坐標(biāo)為(-2,-3),教學(xué)樓所在位置的坐標(biāo)為(-1,2),

1)請(qǐng)確定圖書(shū)館所在位置的坐標(biāo).

2)某人在校門(mén)位置,請(qǐng)用方向與距離的方法表示實(shí)驗(yàn)樓.

3)連接圖書(shū)館與校門(mén)的線(xiàn)段向右平移5個(gè)單位,則平移后的線(xiàn)段上任意一點(diǎn)怎樣表示?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,過(guò)點(diǎn)DDEAB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形;

(2)已知∠DAB=60°,AF是∠DAB的平分線(xiàn),若AD=3,求DC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為4的正方形ABCD沿著折痕EF折疊,使點(diǎn)B落在邊AD的中點(diǎn)G.

(1)求線(xiàn)段BE的長(zhǎng);

(2)連接BF、GF,求證:BF=GF;

(3)求四邊形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DEBC,BE平分∠ABC,∠C=65°,∠ABC=50°.

(1)求∠BED的度數(shù);

(2)判斷BEAC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣1)2017+tan45°+ +|3﹣π|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交于A,B兩點(diǎn),點(diǎn)A和點(diǎn)B的橫坐標(biāo)分別為1和﹣2,這兩點(diǎn)的縱坐標(biāo)之和為1.

(1)求反比例函數(shù)的表達(dá)式與一次函數(shù)的表達(dá)式;
(2)當(dāng)點(diǎn)C的坐標(biāo)為(0,﹣1)時(shí),求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖中二次函數(shù)解析式為y=ax2+bx+c(a≠0)則下列命題中正確的有(填序號(hào))
①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.

查看答案和解析>>

同步練習(xí)冊(cè)答案