【題目】如圖1,在平行四邊形ABCD中,對角線BDAB,以BD為對稱軸將ABD翻折,點(diǎn)A的對應(yīng)點(diǎn)為A,連接AC,得到圖2

推理證明

1)求證:四邊形ABDC是矩形;

實(shí)踐操作

2)在圖1中將ABDBDC進(jìn)行平移、旋轉(zhuǎn)或軸對稱變換,重新構(gòu)造一個(gè)特殊四邊形.

要求:①畫出圖形,標(biāo)明字母;②寫出構(gòu)圖過程及構(gòu)造的特殊四邊形的名稱.(不要求證明)

【答案】(1)證明見解析;(2)見解析.

【解析】

1)根據(jù)平行四邊形的性質(zhì),可得ABDC,ADBC的關(guān)系,根據(jù)軸對稱的性質(zhì),可得BDAB,A′B=AB,根據(jù)矩形的判定,可得答案;
2)根據(jù)平移的性質(zhì),平行四邊形的判定,可得答案.

1)∵四邊形ABCD是平行四邊形,

ABDC,ABDC,ADBC

又∵△ABDABD關(guān)于BD對稱,BDAB

ABABDC,ABDC

∴四邊形ABDC是平行四邊形,

ADAD,

ADBC,

∴四邊形ABDC是矩形;

2)答案不唯一,如:如圖,將BCD沿DA方向平移,得到DBC,

由平移可得,DDBBDDBB,

∴四邊形DDBB是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車駕駛員坐在駕駛座位上,其視線觀察不到的地方叫汽車盲區(qū).如圖是一輛汽車的車頭盲區(qū)示意圖,其中ACBC,DEBC,駕駛員所處位置的高度AC1.4米,駕駛員座位AC與車頭DE之間距離為2米,當(dāng)駕駛員從A點(diǎn)觀察車頭D點(diǎn)時(shí),其視線的俯角為12°,點(diǎn)A、D、B在同一直線上.

1)請直接寫出∠ABC的度數(shù);

2)求車頭盲區(qū)點(diǎn)B、E之間的距離.(結(jié)果精確到0.1米)參考數(shù)據(jù):sin12°0.20cas12°0.99,tan12°0.21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AB1,在線段BC上取一點(diǎn)E,連接AE、ED,將△ABE沿AE翻折,使點(diǎn)B落在B'處,線段EB'AD于點(diǎn)F.將△ECD沿DE翻折,使點(diǎn)C的對應(yīng)點(diǎn)C'落在線段EB'上,且點(diǎn)C'恰好為EB'的中點(diǎn),則線段EF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過點(diǎn)A,點(diǎn)P是拋物線上點(diǎn)A,C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過點(diǎn)PPFBC于點(diǎn)F,點(diǎn)DE的坐標(biāo)分別為(0,6),(﹣40),連接PDPE,DE

1)求拋物線的解析式;

2)若d|PDPF|.請說明d是否為定值?若是定值,請求出其大小;若不是定值,請說明其變化規(guī)律?

3)求出PDE周長取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸,y軸分別交于點(diǎn)A(6,0)B(0,8),動(dòng)點(diǎn)C從點(diǎn)B出發(fā),沿射線BO方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)D從點(diǎn)A出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),連結(jié)CD交直線AB于點(diǎn)E,設(shè)點(diǎn)C運(yùn)動(dòng)的時(shí)間為t秒.

1)當(dāng)點(diǎn)C在線段BO上時(shí),

當(dāng)OC=5時(shí),求點(diǎn)D的坐標(biāo);

問:在運(yùn)動(dòng)過程中,的值是否為一個(gè)不變的值?若是,請求出的值,若不是,請說明理由?

2)是否存在t的值,使得BCEDAE全等?若存在,請求出所有滿足條件的t的值;不存在,請說明理由.

3)過點(diǎn)EAB的垂線交x軸于點(diǎn)H,交y軸于點(diǎn)G(如圖),當(dāng)以點(diǎn)C為圓心,CE 為半徑的⊙C經(jīng)過點(diǎn)G或點(diǎn)H時(shí),請直接寫出所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,每個(gè)月可賣出180件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月就會(huì)少賣出10件,但每件售價(jià)不能高于35元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每個(gè)月的銷售利潤為y元.

(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;求x為何值時(shí)y的值為1920?

(2)每件商品的售價(jià)為多少元時(shí),每個(gè)月可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1)求二次函數(shù)的解析式;

2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;

3)探索:線段上是否存在點(diǎn),使為等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請說呀理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲乙兩車分別從AB兩地出發(fā),相向勻速行駛,已知乙車先出發(fā),1小時(shí)后甲車再出發(fā).一段時(shí)間后,甲乙兩車在休息站C地相遇:到達(dá)C地后,乙車不休息繼續(xù)按原速前往A地,甲車休息半小時(shí)后再按原速前往B地,甲車到達(dá)B地停止運(yùn)動(dòng);乙車到A地后立刻原速返回B地,已知兩車間的距離ykm)隨乙車運(yùn)動(dòng)的時(shí)間xh)變化如圖,則當(dāng)甲車到達(dá)B地時(shí),乙車距離B地的距離為_____km).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠ABC=60°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△ADE,點(diǎn)C的對應(yīng)點(diǎn)E恰好落在AB上.

1)求∠DBC的度數(shù);

2)當(dāng)BD時(shí),求AD的長.

查看答案和解析>>

同步練習(xí)冊答案