【題目】濟(jì)南大明湖畔的“超然樓”被稱(chēng)作“江北第一樓”,某校數(shù)學(xué)社團(tuán)的同學(xué)對(duì)超然樓的高度進(jìn)行了測(cè)量,如圖,他們?cè)贏處仰望塔頂,測(cè)得仰角為30°,再往樓的方向前進(jìn)60m至B處,測(cè)得仰角為60°,若學(xué)生的身高忽略不計(jì), ≈1.7,結(jié)果精確到1m,則該樓的高度CD為(

A.47m
B.51m
C.53m
D.54m

【答案】B
【解析】解:根據(jù)題意得:∠A=30°,∠DBC=60°,DC⊥AC,
∴∠ADB=∠DBC﹣∠A=30°,
∴∠ADB=∠A=30°,
∴BD=AB=60m,
∴CD=BDsin60°=60× =30 ≈51(m).
故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解關(guān)于仰角俯角問(wèn)題(仰角:視線(xiàn)在水平線(xiàn)上方的角;俯角:視線(xiàn)在水平線(xiàn)下方的角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC=2,C=90°ADABC的角平分線(xiàn),DEAB,垂足為E,AD的垂直平分線(xiàn)交AB于點(diǎn)E,則DEF的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為平行四邊形ABCD邊AD上一點(diǎn),E、F分別是PB、PC(靠近點(diǎn)P)的三等分點(diǎn),△PEF、△PDC、△PAB的面積分別為S1、S2、S3 , 若AD=2,AB=2 ,∠A=60°,則S1+S2+S3的值為(

A.
B.
C.
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在四邊形ABCD中,E、F、G、H分別是BC、AD、BD、AC的中點(diǎn).

①求證:EF與GH互相平分;

②當(dāng)四邊形ABCD的邊滿(mǎn)足______ 條件時(shí),EF⊥GH.并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形 ABCD 的對(duì)角線(xiàn) AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三邊長(zhǎng)分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,,設(shè)c為最長(zhǎng)邊.當(dāng)時(shí),△ABC是直角三角形;當(dāng)時(shí),利用代數(shù)式的大小關(guān)系,可以判斷△ABC的形狀(按角分類(lèi)).

1)請(qǐng)你通過(guò)畫(huà)圖探究并判斷:當(dāng)△ABC三邊長(zhǎng)分別為6,89時(shí),△ABC____三角形;當(dāng)△ABC三邊長(zhǎng)分別為6811時(shí),△ABC______三角形.

2)小明同學(xué)根據(jù)上述探究,有下面的猜想:當(dāng)時(shí),△ABC為銳角三角形;當(dāng)時(shí),△ABC為鈍角三角形.請(qǐng)你根據(jù)小明的猜想完成下面的問(wèn)題:

當(dāng),時(shí),最長(zhǎng)邊c在什么范圍內(nèi)取值時(shí),△ABC是直角三角形、銳角三角形、鈍角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點(diǎn)O.

(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請(qǐng)你探索在圖2中,∠BOC的度數(shù),并說(shuō)明理由或?qū)懗鲎C明過(guò)程.
(3)填空:在上述(1)(2)的基礎(chǔ)上可得在圖3中∠BOC=(填寫(xiě)度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點(diǎn)O,猜想得∠BOC的度數(shù)為(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P(m,4),與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案