1.問題提出:有同樣大小正方形256個(gè),拼成如圖1所示的16×16的一個(gè)大的正方形.請問如果用一條直線穿過這個(gè)大正方形的話,最多可以穿過多少個(gè)小正方形?
我們先考慮以下簡單的情況:一條直線穿越一個(gè)正方形的情況.(如圖2)
從圖2中我們可以看出,當(dāng)一條直線穿過一個(gè)小正方形時(shí),這條直線最多與正方形上、下、左、右四條邊中的兩個(gè)邊相交,所以當(dāng)一條直線穿過一個(gè)小正方形時(shí),這條直線會(huì)與其中某兩條邊產(chǎn)生兩個(gè)交點(diǎn),并且以兩個(gè)交點(diǎn)為頂點(diǎn)的線段會(huì)全部落在小正方形內(nèi).
這就啟發(fā)我們:為了求出直線L最多穿過多少個(gè)小正方形,我們可以轉(zhuǎn)而去考慮當(dāng)直線L穿越由小正方形拼成的大正方形時(shí)最多會(huì)產(chǎn)生多少個(gè)交點(diǎn).然后由交點(diǎn)數(shù)去確定有多少根小線段,進(jìn)而通過線段的根數(shù)確定下正方形的個(gè)數(shù).
再讓我們來考慮3×3正方形的情況(如圖3):為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過一個(gè)3×3的正方形,我們從兩個(gè)方向來分析直線l穿過3×3正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的兩條線段;從左右來看,這條直線最多可穿過左右平行的四條線段;這樣直線L最多可穿過3×3的大正方形中的六條線段,從而直線L上會(huì)產(chǎn)生6個(gè)交點(diǎn),這6個(gè)交點(diǎn)之間的5條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過5個(gè)小正方形.
問題解決:
(1)有同樣大小的小正方形16個(gè),拼成如圖4所示的4×4的一個(gè)大的正方形.請問如果用一條直線穿過這個(gè)大正方形的話,最多可以穿過7個(gè)小正方形?
(2)有同樣大小的小正方形100個(gè),拼成10×10的一個(gè)大的正方形.請問如果用一條直線穿過這個(gè)大正方形的話,最多可以穿過19個(gè)小正方形?
(3)有同樣大小的小正方形256個(gè),拼成16×16的一個(gè)大的正方形.請問如果用一條直線穿過這個(gè)大正方形的話,最多可以穿過31個(gè)小正方形?
(4)請問如果用一條直線穿n×n大正方形的話,最多可以穿過2n-1個(gè)小正方形?
拓展探究:
(5)請問如果用一條直線穿2×3大長方形的話(如圖5),最多可以穿過4個(gè)小正方形?
(6)請問如果用一條直線穿3×4大長方形的話(如圖6),最多可以穿過6個(gè)小正方形?
(7)請問如果用一條直線穿m×n大長方形的話,最多可以穿過m+n-1個(gè)小正方形?
請將你的推理過程進(jìn)行簡要的敘述.
類比探究:由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個(gè)面,類比上面問題解決的方法解決如下問題.
(8)如圖①有同樣大小的小正方體8個(gè),拼成如圖①所示的2×2×2的一個(gè)大的正方體.請問如果用一條直線穿過這個(gè)大正方體的話,最多可以穿過多少個(gè)小正方體?
(9)請問如果用一條直線穿過n×n×n大正方體的話,最多可以穿過多少個(gè)小正方體?