【題目】某中學為了科學建設“學生健康成長工程”.隨機抽取了部分學生家庭對其家長進行了主題為“周末孩子在家您關心嗎?”的問卷調查,將回收的問卷進行分析整理,得到了如下的樣本統(tǒng)計表和扇形統(tǒng)計圖:
代號 | 情況分類 | 家庭數 |
帶孩子玩并且關心其作業(yè)完成情況 | 16 | |
只關心其作業(yè)完成情況 | b | |
只帶孩子玩 | 8 | |
既不帶孩子玩也不關心其作業(yè)完成情況 | d |
(1)求的值;
(2)該校學生家庭總數為500,學校決定按比例在類家庭中抽取家長組成培訓班,其比例為類取20%,類各取60%,請你估計該培訓班的家庭數;
(3)若在類家庭中只有一個城鎮(zhèn)家庭,其余是農村家庭,請用列舉法求出在類中隨機抽出2個家庭進行深度采訪,其中有一個是城鎮(zhèn)家庭的概率.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD是一塊綠化帶,陰影部分EOFB,GHMN都是正方形的花圃,其中EOFB的頂點O是正方形中心.已知自由飛翔的小鳥,將隨機落在這塊綠化帶上,則小鳥落在花圃上的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等腰RtABC與等腰RtCDE,∠ACB=∠DCE=90°.把RtABC繞點C旋轉.
(1)如圖1,當點A旋轉到ED的延長線時,若,BE=5,求CD的長;
(2)當RtABC旋轉到如圖2所示的位置時,過點C作BD的垂線交BD于點F,交AE于點G,求證:BD=2CG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平整的地面上,由若干個完全相同的棱長為10 cm的小正方體堆成一個幾何體,如圖①所示.
(1)請你在方格紙中分別畫出這個幾何體的主視圖和左視圖;
(2)若現在手頭還有一些相同的小正方體,如果保持這個幾何體的主視圖和俯視圖不變,
Ⅰ.在圖①所示幾何體上最多可以添加 個小正方體;
Ⅱ.在圖①所示幾何體上最多可以拿走 個小正方體;
Ⅲ.在題Ⅱ的情況下,把這個幾何體放置在墻角,使得幾何體的左面和后面靠墻,其俯視圖如圖②所示,若給該幾何體露在外面的面噴上紅漆,則需要噴漆的面積最少是多少平方厘米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,正方形的邊長為,動點從點出發(fā),在正方形的邊上沿運動,設運動的時間為,點移動的路程為,與的函數圖象如圖②,請回答下列問題:
(1)點在上運動的時間為 ,在上運動的速度為
(2)設的面積為,求當點在上運動時,與之間的函數解析式;
(3)①下列圖表示的面積與時間之間的函數圖象是 .
②當 時,的面積為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為4的等邊三角形ABC中,E是對稱軸AD上的一個動點,連接EC,將線段EC繞點C逆時針旋轉60°得到FC,連接DF,則在點E運動過程中,DF的最小值是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(理解新知)如圖①,已知,在內部畫射線,得到三個角,分別為,,,若這三個角中有一個角是另外一個角的兩倍,則稱射線為的“二倍角線”.
(1)一個角的角平分線______這個角的“二倍角線”(填“是”或“不是”)
(2)若,射線為的“二倍角線”,則的大小是______;
(解決問題)如圖②,己知,射線從出發(fā),以/秒的速度繞點逆時針旋轉;射線從出發(fā),以/秒的速度繞點順時針旋轉,射線,同時出發(fā),當其中一條射線回到出發(fā)位置的時候,整個運動隨之停止,設運動的時間為秒.
(3)當射線,旋轉到同一條直線上時,求的值;
(4)若,,三條射線中,一條射線恰好是以另外兩條射線為邊組成的角的“二倍角線”,直接寫出所有可能的值______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“城有二姝,小藝與迎迎.小藝行八十步,迎迎行六十.今迎迎先行百步,小藝追之,問幾何步及之?(改編自《九章算術》)”(步:古長度單位,1步約合今1.5米.)大意:在相同的時間里,小藝走80步,迎迎可走60步.現讓迎迎先走100步,小藝開始追迎迎,問小藝需走多少步方可追上迎迎?
(1)在相同的時間里:
①若小藝走160步,則迎迎可走________步;
②若小藝走步,則迎迎可走_________步;
(2)求小藝追上迎迎時所走的步數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com