【題目】如圖①,已知點E,F,G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,求證四邊形FFG是平行四邊形.根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:
(1)根據(jù)上述思路,請你寫出完整的證明過程;
(2)如圖,已知,分別以AB、AC為邊,在BC同側(cè)作等邊三角形ABD和等邊三角形ACE,連接CD,BF.可通過證明△________≌△________,得到;
(3)如圖③,點P是四邊形ABCD內(nèi)一點,且滿足,,,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想四邊形EFGH的形狀,并證明.
【答案】(1)見解析;(2)ADC,ABE;(3)四邊形EFGH為菱形,理由見解析
【解析】
(1)連接BD,根據(jù)三角形的中位線的性質(zhì)得到∥,,由平行四邊形的判定定理即可得到結(jié)論;
(2)先利用等邊三角形的性質(zhì)得AD=AB,AC=AE,∠BAD=∠CAE=60°,則∠DAC=∠BAE,于是根據(jù)證得,從而得到結(jié)論;
(3)連接AC、BD,如圖3,先證明△PBD≌△APC得到BD=AC,再利用三角形中位線性質(zhì)得到HG=HE,接著根據(jù)(1)中結(jié)論和菱形的判定方法可判斷四邊形EFGH為菱形.
(1)∵點E,F,G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,
∴EH是的中位線,FG是的中位線,
∴∥,,∥,,
∴∥,,
∴四邊形EFGH是平行四邊形;
(2)ADC,ABE;
理由是:
∵和都是等邊三角形,
∴,,,
∴,即,
在和中,
∴,
∴.
(3)四邊形EFGH為菱形
如圖,連接AC、BD,
∵,
∴,即,
在和中,,
∴,
∴,
∵,,,
∵由(1)中的結(jié)論可知,四邊形EFGH為平行四邊形,
∴四邊形EFCH為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于.經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù)關系,當銷售單價為元時銷售量為件,當銷售單價為元時銷售量為件.
(1)此試銷期間銷售量可能為嗎?說明理由.
(2)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進價、售價如表所示:
()若商場預計進貨款為元,則這兩種臺燈各購進多少盞?
()若商場規(guī)定型臺燈的進貨數(shù)量不超過型臺燈數(shù)量的倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車“和“網(wǎng)購”給我們的生活帶來了很多便利,九年級數(shù)學興趣小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中信息求出m= ,n= ;
(2)請你幫助他們將這兩個統(tǒng)計圖補全;
(3)已知A、B兩位同學都最認可“微信”,C同學最認可“支付寶”,D同學最認可“網(wǎng)購”,從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仙桃是遂寧市某地的特色時令水果.仙桃一上市,水果店的老板用2400元購進一批仙桃,很快售完;老板又用3700元購進第二批仙桃,所購件數(shù)是第一批的倍,但進價比第一批每件多了5元.
(1)第一批仙桃每件進價是多少元?
(2)老板以每件225元的價格銷售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批仙桃的銷售利潤不少于440元,剩余的仙桃每件售價至少打幾折?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點,,,連接,得到四邊形.點在邊上,連接,將邊沿折疊,點的對應點為點,若點到四邊形較長兩對邊的距離之比為.則點的坐標為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與y軸交于點C,與反比例函數(shù)y=的圖象交于A,B兩點,過點B作BE⊥x軸于點E,已知A點坐標是(2,4),BE=2.
(1)求一次函數(shù)與反比例函數(shù)的表達式;
(2)連接OA、OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD∥BC,CD⊥BC,∠ABC=60°,且AD=12,BC=18.動點P從點A出發(fā),以每秒2個單位長度的速度向點D運動,設運動時間為t秒(0<t≤6)
(1)當t=6時,cos∠BPC= ;
(2)當△BPC的外接圓與AD相切時,求t的值;
(3)在點P運動過程中,cos∠BPC是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com