【題目】2019423日,第24個(gè)世界讀書日,為了推進(jìn)中華傳統(tǒng)文化教育,營造濃郁的讀書氛圍,我區(qū)某學(xué)校舉辦了“讓讀書成為習(xí)慣,讓書香飄滿校園”主題活動(dòng),為此特為每個(gè)班級訂購了一批新的圖書,初一年級兩個(gè)班訂購圖書情況如下表:

老舍文集(套)

四大名善(套)

總表用(元)

初一(1)班

4

2

80

初一(2)班

2

3

520

1)求老舍文集和四大名著每套各是多少元;

2)學(xué)校準(zhǔn)備再購買老舍文集和四大名著共10套,總費(fèi)用不超過700元。問學(xué)校有哪幾種購買方案。

【答案】老舍文集50元,四大名著140元;(2)共3種方案

【解析】

1)可設(shè)老舍文集x元,四大名著y元,根據(jù)題意列出關(guān)于x,y的二元一次方程組,解之即可;(2)設(shè)老舍文集m套,則四大名著有(10-m)套,根據(jù)總費(fèi)用不超過700元列出關(guān)于m的不等式,求出m的取值范圍,取整數(shù)m即為購買方案.

解:(1)設(shè)老舍文集x元,四大名著y元,

根據(jù)題意得

解得,

所以老舍文集50元,四大名著140元.

2)設(shè)老舍文集m套,則四大名著有(10-m)套

根據(jù)題意得,

解得,因?yàn)?/span>

所以,,,共3中方案,

, 購買老舍文集8套,四大名著2套;

, 購買老舍文集9套,四大名著1套;

, 購買老舍文集10套,不購買四大名著;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級380名師生秋游,計(jì)劃租用7輛客車,現(xiàn)有甲、乙兩種型號客車,它們的載客量和租金如表.

甲種客車

乙種客車

載客量(座/輛)

60

45

租金(元/輛)

550

450

1)設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;

2)當(dāng)甲種客車有多少輛時(shí),能保障所有的師生能參加秋游且租車費(fèi)用最少,最少費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,,ADBC邊上的高,如果,我們就稱△ABC為“高和三角形”.請你依據(jù)這一定義回答問題:

1)若,,則△ABC____ “高和三角形”(填“是”或“不是”);

2)一般地,如果△ABC是“高和三角形”,則之間的關(guān)系是____,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形中,.射線,點(diǎn)從點(diǎn)出發(fā)沿射線的速度運(yùn)動(dòng),同點(diǎn)從點(diǎn)出發(fā)沿射線的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為;

1)連接,當(dāng)經(jīng)過邊的中點(diǎn)時(shí),求證:;

2)求當(dāng)為何值,四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是( 。

A. b B. b1b1 C. b2 D. 1b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請你添加一個(gè)適當(dāng)?shù)臈l件:_____________,使△AEH≌△CEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線與的延長線交于點(diǎn)E,與交于點(diǎn)F,且,,垂足為G,若,則的長是( ).

A.3B.C.D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=115°,那么∠BFD的度數(shù)是

A.62°B.64°C.57.5°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

新定義:

將一個(gè)平面圖形分為面積相等的兩部分的直線叫做該平面圖形的等積線,其等積線被該平面圖形截得的線段叫做該平面圖形的等積線段(例如圓的直徑就是圓的等積線段

解決問題:

已知在RtABC中,∠BAC=90°,AB=AC=2.

1)如圖1,若ADBC,垂足為D,則ADABC的一條等積線段,直接寫出AD的長;

2)在圖2和圖3中,分別畫出一條等積線段,并直接寫出它們的長度. (要求:圖1、圖2和圖3中的等積線段的長度各不相等)

查看答案和解析>>

同步練習(xí)冊答案