【題目】已知關(guān)于x的一元二次方程x2-(2m+1)x+m2+m=0.
(1)求證:該一元二次方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若該方程的兩根x1、x2是某個(gè)等腰三角形的兩邊長(zhǎng),且該三角形的周長(zhǎng)為10,試求m的值.
【答案】(1)見(jiàn)解析;(2)m=3或m=.
【解析】
(1)方程總有兩個(gè)不相等的實(shí)數(shù)根的條件是△>0,由△>0可推出m的取值范圍;
(2)先求解方程得x1= m,x2= m+1,再分別以x1,x2為腰根據(jù)周長(zhǎng)的值列方程求解即可.
(1)∵b2-4ac=[-(2m+1)]2-4(m2+m)=1>0
∴該方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)由題意知,x1= m,x2= m+1
∴x1≠ x2
①若x1為腰,x2為底邊,得3m+1=10,m=3;
②若x2為腰,x1為底邊,得3m+2=10, m=;
綜上所述,m=3或m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點(diǎn)D是AB的中點(diǎn),過(guò)點(diǎn)B作CD的垂線,垂足為點(diǎn)E.
(1)求線段CD的長(zhǎng);
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE是O的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn).
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線與軸兩個(gè)交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對(duì)稱軸為直線,將此拋物線向左平移2個(gè)單位,再向下平移3個(gè)單位,得到的拋物線過(guò)點(diǎn)( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.
(1)求線段AD的長(zhǎng)度;
(2)點(diǎn)E是線段AC上的一點(diǎn),試問(wèn):當(dāng)點(diǎn)E在什么位置時(shí),直線ED與⊙O相切?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt中,,點(diǎn)為邊上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作交邊于,過(guò)點(diǎn)作射線交邊于點(diǎn),交射線于點(diǎn),聯(lián)結(jié).設(shè)兩點(diǎn)的距離為,兩點(diǎn)的距離為.
(1)求證:;
(2)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(3)點(diǎn)在運(yùn)動(dòng)過(guò)程中,能否構(gòu)成等腰三角形?如果能,請(qǐng)直接寫出的長(zhǎng),如果不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相較于A.B兩點(diǎn),與y軸相交于點(diǎn)C(0,-3),拋物線的對(duì)稱軸為直線x=1.
(1)求二次函數(shù)的解析式;
(2)若拋物線的頂點(diǎn)為D,點(diǎn)E在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AE交對(duì)稱軸于點(diǎn)F,試判斷四邊形CDEF的形狀,并說(shuō)明理由;
(3)若點(diǎn)M在x軸上,點(diǎn)P在拋物線上,是否存在以點(diǎn)A,E,M,P為頂點(diǎn)且以AE為一邊的平行四邊形?若存在,請(qǐng)求出所有滿足要求的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)畫出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com