【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

(1)畫出ABC向下平移4個(gè)單位長(zhǎng)度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是 

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是   

(3)A2B2C2的面積是   平方單位.

【答案】(1)(2,﹣2);

(2)(1,0);

(3)10.

【解析】

試題(1)根據(jù)平移的性質(zhì)得出平移后而得到點(diǎn)的坐標(biāo);

(2)根據(jù)位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置,從而得到點(diǎn)的坐標(biāo);

(3)利用等腰直角三角形的性質(zhì)得出A2B2C2的面積.

試題解析:(1)如圖所示:C1(2,﹣2);

故答案為:(2,﹣2);

(2)如圖所示:C2(1,0);

故答案為:(1,0);

(3)=20,=20,=40,

A2B2C2是等腰直角三角形,

A2B2C2的面積是:××=10平方單位.

故答案為:10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+3a0)與x軸交于點(diǎn)A10)和點(diǎn)B-3,0),與y軸交于點(diǎn)C

1)求拋物線的解析式;
2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】旅行社組團(tuán)去外地考察學(xué)習(xí),10人起組團(tuán),每人單價(jià)1200元.該旅行社對(duì)超過(guò)10人的團(tuán)給予優(yōu)惠,即考察團(tuán)每增加一人,每人的單價(jià)就降低20元.(每人單價(jià)不能低于800元)當(dāng)考察團(tuán)人數(shù)為多少人時(shí),該旅行社可以獲得最大營(yíng)業(yè)額?最大營(yíng)業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用一塊長(zhǎng)為50cm、寬為30cm的長(zhǎng)方形鐵片制作一個(gè)無(wú)蓋的盒子,若在鐵片的四個(gè)角截去四個(gè)相同的小正方形,設(shè)小正方形的邊長(zhǎng)為xcm

1)底面的長(zhǎng)AB  cm,寬BC  cm(用含x的代數(shù)式表示)

2)當(dāng)做成盒子的底面積為300cm2時(shí),求該盒子的容積.

3)該盒子的側(cè)面積S是否存在最大的情況?若存在,求出x的值及最大值是多少?若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC為弦,點(diǎn)D是弧BC的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線交AC的延長(zhǎng)線于點(diǎn)E

1)判斷DEAE的位置關(guān)系,并說(shuō)明理由;

2)求證:AB=AE+CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;

(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;

(3)點(diǎn)G是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ACB=60,半徑為2⊙0BC于點(diǎn)C,若將⊙OCB上向右滾動(dòng),則當(dāng)滾動(dòng)到⊙OCA也相切時(shí),圓心O移動(dòng)的水平距離為 ( )

A. B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中有4個(gè)大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-1,2,-3,4

1)搖勻后任意摸出1個(gè)球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________

2)搖勻后先從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?/span>3個(gè)球中任意摸出1個(gè)球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案