【題目】如圖,已知點D在⊙O的直徑AB延長線上,點C在⊙O上,過點D作ED⊥AD,與AC的延長線相交于點E,且CD=DE.
(1)求證:CD為⊙O的切線;
(2)若AB=12,且BC=CE時,求BD的長.
【答案】(1)詳見解析;(2)6-6.
【解析】
(1)連結0C,由AB為直徑,得到∠ACB=90°,求得∠E=∠ABC,根據(jù)等腰三角形的性質得到∠ABC=∠OCB,等量代換得到∠E=∠OCB,推出OC⊥CD,于是得到結論;
(2)證明△OBC≌△DCE(ASA),得到OC=CD=6,根據(jù)勾股定理求出斜邊的長,進而可求出BD的長.
(1)證明:連接OC,
∵AB為直徑,
∴∠ACB=90°,
∴∠BCD+∠ECD=90°,
在Rt△ADE和Rt△ABC中,∠E=90°-∠A,∠ABC=90°-∠A,
∴∠E=∠ABC,
∵OB=OC,
∴∠ABC=∠OCB,
∴∠E=∠OCB,
又∵CD=DE,
∴∠E=∠ECD,
∴∠OCB=∠ECD,
∴∠OCB+∠BCD=90°,即OC⊥CD,
∴CD為⊙O的切線.
(2)由(1)知,∠OBC=∠OCB=∠DCE=∠E,
在△OBC和△DCE中,
∴△OBC≌△DCE(ASA),
∴OC=CD=6,
Rt△OCD中,OC=CD=6,∠OCD=90°,
∴
即
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,D是邊長為4㎝的等邊△ABC的邊AB上的一點,DQ⊥AB交邊BC于點Q,RQ⊥BC交邊AC于點R,RP⊥AC交邊AB于點E,交QD的延長線于點P.
圖1 圖2
①請說明△PQR是等邊三角形的理由;
②若BD=1.3㎝,則AE=_______㎝(填空)
③如圖2,當點E恰好與點D重合時,求出BD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC的BC邊上的一點,AD=BD,∠ADC=80°.
(1)求∠B的度數(shù);
(2)若∠BAC=70°,判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是關于的方程(x-2)(x-m)=(p-2)(p-m)的兩個實數(shù)根.
(1)求的值;
(2)若是某直角三角形的兩直角邊的長,問當實數(shù)m,p滿足什么條件時,此直角三角形的面積最大?并求出其最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雙十一購物節(jié)即將到來,某商場設計了兩種的促銷方案,并有以下兩種銷售量預期.預期一:第1步,銷售量擴大為原來的a倍.第2步,再擴大為第1步銷售量的b倍.預期二:第1步,銷售量擴大為原來的倍;第2步,再擴大為第1步銷售量的倍;其中a,b為不相等的正數(shù),請問兩種預期中,哪種銷售量更多?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P與圖形W,若點Q為圖形W上任意一點,點Q關于第一、三象限角平分線的對稱點為Q,且線段PQ,的中點為M(m,0),則稱點P是圖形W關于點M(m,0)的“關聯(lián)點”.
(1)如圖1,若點P是點Q(0,)關于原點的關聯(lián)點,則點P的坐標為 ;
(2)如圖2,在△ABC中,A(2,2),B(-2,0),C(0,-2),
①將線段AO向右平移d(d>0)個單位長度,若平移后的線段上存在兩個△ABC關于點(2,0)的關聯(lián)點,則d的取值范圍是 .
②已知點S(n+2,0)和點T(n+4,0),若線段ST上存在△ABC關于點N(n,0)的關聯(lián)點,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑期臨近,重慶市某中學校為了豐富學生的暑期文化生活,同時幫助孩子融洽親子關系,增進親子間的情感交流,計劃組織學生去某景區(qū)參加為期一周的“親子一家游”活動. 若報名參加此次活動的學生人數(shù)共有56人,其中要求參加的每名學生都至少需要一名家長陪同參加.
(1)假設參加此次活動的家長人數(shù)是參加學生人數(shù)的2倍少2人,為了此次活動學校專門為每名學生和家長購買一件T恤衫, 家長的T恤衫每購買8件贈送1件學生T恤衫(不足8件不贈送),學生T恤衫每件15元,學校購買服裝的費用不超過3401元,請問每件家長T恤衫的價格最高是多少元?
(2)已知該景區(qū)的成人票價每張100元,學生票價每張50元,為了支持此次活動,該景區(qū)特地推出如下優(yōu)惠活動:每張成人票價格下調a%,學生票價格下調.a% 另外,經(jīng)統(tǒng)計此次參加活動的家長人數(shù)比學生人數(shù)多a%, 參加此次活動的購買票價總費用比未優(yōu)惠前減少了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個,超市在某天提供的早餐食品為菜包、面包、雞蛋、油條四樣食品.
(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是________事件(填“隨機”“必然”或“不可能”);
(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com