【題目】如圖,RtABC中,∠ACB=90°,CD平分∠ACBAB于點D,按下列步驟作圖:

步驟1:分別以點C和點D為圓心,大于的長為半徑作弧,兩弧相交于M,N兩點;

步驟2:作直線MN,分別交AC,BC于點E,F(xiàn);

步驟3:連接DE,DF.

AC=4,BC=2,則線段DE的長為  

A. B. C. D.

【答案】D

【解析】

先根據(jù)角平分線的性質(zhì)得到ECD=DCF=45°,再根據(jù)垂直平分線的性質(zhì)得到CE=DE,∠ECD=∠EDC=45°,進而得到∠CED=90°,證得DE∥CB,所以△AED∽△ACB,設(shè)ED=x,根據(jù)相似三角形對應線段成比例列式求出x即可.

∵CD平分∠ACB,∴∠ECD=∠DCF=45°,∵MN垂直平分CD,∴CE=DE,∴∠ECD=∠EDC=45°,∴∠CED=90°,又∵∠ACB=90°,∴DE∥CB,∴△AED∽△ACB,,設(shè)ED=x,則EC=x,AE=4-x,∴,解得x=,故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b的圖象是直線l,點A(,)在反比例函數(shù)y=的圖象上.

(1)求m的值;

(2)如圖,若直線l與反比例函數(shù)的圖象相交于M、N兩點,不等式kx+b>的解集為1<x<2,求一次函數(shù)的表達式;

(3)當b=4時,一次函數(shù)與反比例函數(shù)的圖象有兩個交點,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,∠BAD=90°CCEAD垂足為E,∠EDC=∠BDC.

1)求證:CEO的切線

2)若DE+CE=4,AB=6BD的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校是乒乓球體育傳統(tǒng)項目學校,為進一步推動該項目的開展,學校準備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.

(1)求兩種球拍每副各多少元?

(2)若學校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 是等邊三角形,D AC 上一點連接 BD,旋轉(zhuǎn)△BCD,使點 B 落在 BC上方的點 E 處,點 C 落在 BC 上的點 F 處,點 D 落在點 C 處,連接 AE

求證:四邊形 ABFE 是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=,OBC邊的中點,點E是正方形內(nèi)一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉(zhuǎn)90°DF,連接AE,CF.

(1)求證:AE=CF;

(2)若A,E,O三點共線,連接OF,求線段OF的長.

(3)求線段OF長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,

(1)求⊙O的半徑;

(2)O到弦BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 某次學生夏令營活動,有小學生、初中生、高中生和大學生參加,共200人,各類學生人數(shù)比例見扇形統(tǒng)計圖.

1)參加這次夏令營活動的初中生共有______人.

2)活動組織者號召參加這次夏令營活動的所有學生為貧困學生捐款.結(jié)果小學生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大學生每人捐款20元,平均每人捐款多少元?

3)在(2)的條件下,把每個學生的捐款數(shù)(以元為單位)一一記錄下來,則在這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點P,過點P分別作PN垂直于AB于點N,PM垂直于AC于點M,BN和CM有什么數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

同步練習冊答案