【題目】如圖,是的角平分線,,分別是和的高,連接交于.下列結論:①垂直平分;②垂直平分;③平分;④當為時,,其中不正確的結論的個數(shù)為( )
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知PA、PB是⊙O的切線,A、B分別為切點,∠OAB=30°.
(1)∠APB=_____;
(2)當OA=2時,AP=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校機器人興趣小組在如圖①所示的矩形場地上開展訓練.機器人從點出發(fā),在矩形邊上沿著的方向勻速移動,到達點時停止移動.已知機器人的速度為1個單位長度,移動至拐角處調(diào)整方向需要(即在、處拐彎時分別用時).設機器人所用時間為時,其所在位置用點表示,到對角線的距離(即垂線段的長)為個單位長度,其中與的函數(shù)圖象如圖②所示.
(1)求、的長;
(2)如圖②,點、分別在線段、上,線段平行于橫軸,、的橫坐標分別為、,設機器人用了到達點處,用了到達點處(如圖①).若,求、的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD在平面直角坐標系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:
(1)求點D的坐標;
(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點H,則k= ;
(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),點為坐標原點,軸上點的橫坐標為,軸上點的縱坐標為,且,過中點作軸的平行線交于點
(1)求點的坐標;
(2)第一象限的點在上,點的橫坐標為,的面積為(),用含的式子表示,并直接寫出相應的的范圍;
(3)在(2)的條件下,過點作直線的垂線,點為垂足,的平分線交于點,交軸正半軸于點,若,求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請?zhí)砑右粋條件使矩形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王和小張利用如圖所示的轉盤做游戲,轉盤的盤面被分為面積相等的4個扇形區(qū)域,且分別標有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉動轉盤一次,分別記錄指針停止時所對應的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:
(1)小王轉動轉盤,當轉盤指針停止,對應盤面數(shù)字為奇數(shù)的概率是多少?
(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為獎勵該校在南山區(qū)第二屆學生技能大賽中表現(xiàn)突出的20名同學,派李老師為這些同學購買獎品,要求每人一件,李老師到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇.如果買4個筆記本和2支鋼筆,則需86元;如果買3個筆記本和1支鋼筆,則需57元.
(1)求筆記本和鋼筆的單價分別為多少元?
(2)售貨員提示,購買筆記本沒有優(yōu)惠:買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買x(x>10)支鋼筆,所需費用為y元,請你求出y與x之間的函數(shù)關系式;
(3)在(2)的條件下,如果買同一種獎品,請你幫忙計算說明,買哪種獎品費用更低.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果關于x的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”.例如,一元二次方程的兩個根是2和4,則方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則c ;
(2)若是“倍根方程”,求代數(shù)式的值;
(3)若方程是倍根方程,且不同的兩點M(k+1,5),N(3-k,5)都在拋物線上,求一元二次方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com