【題目】如圖,的角平分線,,分別是的高,連接.下列結論:①垂直平分;②垂直平分;③平分;④當時,,其中不正確的結論的個數(shù)為(

A.B.C.D.

【答案】A

【解析】

根據(jù)角平分線性質(zhì)求出DE=DF,根據(jù)HL可證△AED≌△AFD,即可推出AE=AF,再逐個判斷即可.

:AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,

DE=DF,AED=AFD=90° ,

RtAEDRtAFD,

RtAEDRtAFD(HL),

AE=AF,ADE=ADF,

AD平分∠EDF;③正確;

AE=AF,DE=DF,

AD垂直平分EF,①正確;②錯誤,

∵∠BAC=60°,

∴∠DAE=30°,

,

AG=3DG,④正確.

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知PA、PB⊙O的切線,A、B分別為切點,∠OAB=30°.

(1)∠APB=_____

(2)當OA=2時,AP=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校機器人興趣小組在如圖①所示的矩形場地上開展訓練.機器人從點出發(fā),在矩形邊上沿著的方向勻速移動,到達點時停止移動.已知機器人的速度為1個單位長度,移動至拐角處調(diào)整方向需要(即在處拐彎時分別用時).設機器人所用時間為時,其所在位置用點表示,到對角線的距離(即垂線段的長)為個單位長度,其中的函數(shù)圖象如圖②所示.

1)求、的長;

2)如圖②,點分別在線段、上,線段平行于橫軸,、的橫坐標分別為、,設機器人用了到達點處,用了到達點處(如圖①).若,求、的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形ABCD在平面直角坐標系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:

(1)求點D的坐標;

(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點H,則k=   ;

(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系內(nèi),點為坐標原點,軸上點的橫坐標為,軸上點的縱坐標為,且,過中點軸的平行線交于點

1)求點的坐標;

2)第一象限的點上,點的橫坐標為,的面積為),用含的式子表示,并直接寫出相應的的范圍;

3)在(2)的條件下,過點作直線的垂線,點為垂足,的平分線交于點,交軸正半軸于點,若,求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對角線ACBD相交于點O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王和小張利用如圖所示的轉盤做游戲,轉盤的盤面被分為面積相等的4個扇形區(qū)域,且分別標有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉動轉盤一次,分別記錄指針停止時所對應的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:

(1)小王轉動轉盤,當轉盤指針停止,對應盤面數(shù)字為奇數(shù)的概率是多少?

(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為獎勵該校在南山區(qū)第二屆學生技能大賽中表現(xiàn)突出的20名同學,派李老師為這些同學購買獎品,要求每人一件,李老師到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇.如果買4個筆記本和2支鋼筆,則需86元;如果買3個筆記本和1支鋼筆,則需57元.

1)求筆記本和鋼筆的單價分別為多少元?

2)售貨員提示,購買筆記本沒有優(yōu)惠:買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買xx10)支鋼筆,所需費用為y元,請你求出yx之間的函數(shù)關系式;

3)在(2)的條件下,如果買同一種獎品,請你幫忙計算說明,買哪種獎品費用更低.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關于x的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的2,那么稱這樣的方程為倍根方程”.例如,一元二次方程的兩個根是24,則方程就是倍根方程”.

(1)若一元二次方程倍根方程”,c ;

(2)倍根方程”,求代數(shù)式的值;

(3)若方程是倍根方程,且不同的兩點M(k+1,5),N(3-k,5)都在拋物線上,求一元二次方程的根.

查看答案和解析>>

同步練習冊答案