【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點(diǎn)O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

【答案】(1)證明見解析;(2)AB=AD(或ACBD答案不唯一).

【解析】試題分析:(1)根據(jù)平行四邊形對角線互相平分可得OA=OC,OB=OD,根據(jù)等角對等邊可得OB=OC,然后求出AC=BD,再根據(jù)對角線相等的平行四邊形是矩形證明;

(2)根據(jù)正方形的判定方法添加即可.

試題解析:解:(1)∵四邊形ABCD是平行四邊形,OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四邊形ABCD是矩形;

(2)AB=AD(或ACBD答案不唯一).

理由:四邊形ABCD是矩形,又AB=AD,∴四邊形ABCD是正方形.

或:四邊形ABCD是矩形,又ACBD,∴四邊形ABCD是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EAD的中點(diǎn),∠EBC的平分線交CD于點(diǎn)F,將△DEF沿EF折疊,點(diǎn)D恰好落在BEM點(diǎn)處,延長BC、EF交于點(diǎn)N.有下列四個結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④SBEF=3SDEF.其中,將正確結(jié)論的序號全部選對的是( )

A. ①②③

B. ①②④

C. ②③④

D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,均勻的正四面體的各面依次標(biāo)有1,2,3,4四個數(shù)字.小明做了60次投擲試驗,結(jié)果統(tǒng)計如下

朝下數(shù)字

1

2

3

4

出現(xiàn)的次數(shù)

16

20

14

10


(1)計算上述試驗中“4朝下”的頻率是多少?
(2)“根據(jù)試驗結(jié)果,投擲一次正四面體,出現(xiàn)2朝下的概率是 .”的說法正確嗎?為什么?
(3)隨機(jī)投擲正四面體兩次,請用列表或畫樹狀圖法,求兩次朝下的數(shù)字之和大于4的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

一般地,n個相同的因數(shù)a相乘記為an,記為an.如2×2×2=23=8,此時,3叫做以2為底8的對數(shù),記為log28(即log28=3).一般地,若an=ba0a≠1,b0),則n叫做以a為底b的對數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4).

1)計算以下各對數(shù)的值:

log24= ,log216= ,log264=

2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式,log24、log216、log264之間又滿足怎樣的關(guān)系式

3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?

logaM+logaN= ;(a0a≠1,M0,N0

4)根據(jù)冪的運(yùn)算法則:anam=an+m以及對數(shù)的含義證明上述結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)積極開展陽光體育活動,共開設(shè)了跳繩、乒乓球、籃球、跑步四種運(yùn)動項目.為了解學(xué)生最喜愛哪一種項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出)

(1)求本次被調(diào)查的學(xué)生人數(shù);

(2)補(bǔ)全條形統(tǒng)計圖;

(3)根據(jù)統(tǒng)計的數(shù)據(jù)估計該中學(xué)3200名學(xué)生中最喜愛籃球的人數(shù)約有_____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD.

(1)如圖1,直接寫出∠BME、E、END的數(shù)量關(guān)系為   ;

(2)如圖2,BME與∠CNE的角平分線所在的直線相交于點(diǎn)P,試探究∠P與∠E之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如圖3,ABM=MBE,CDN=NDE,直線MB、ND交于點(diǎn)F,則 =   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。.
A.一個游戲的中獎概率是 ,則做100次這樣的游戲一定會中獎
B.為了解全國中學(xué)生的心理健康情況,應(yīng)該采用普查的方式
C.一組數(shù)據(jù) 8,8,7,10,6,8,9 的眾數(shù)和中位數(shù)都是8
D.若甲組數(shù)據(jù)的方差s2=0.01,乙組數(shù)據(jù)的方差s2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺“幸運(yùn) 52”欄目中的“百寶箱”互動環(huán)節(jié),是一種競猜游戲,游戲規(guī)則如下:在20個商標(biāo)牌中,有5個商標(biāo)牌的背面注明一定的獎金額,其余商標(biāo)牌的背面是一張哭臉,若翻到哭臉,就不得獎,參與這個游戲的觀眾有三次翻牌機(jī)會(翻過的牌不能再翻).某觀眾前兩次翻牌均獲得若干獎金,那么他第三次翻牌獲獎的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把數(shù)形關(guān)系(勾股定理)帶到其他星球,作為地球人與其他星球進(jìn)行第一次談話的語言.

[定理表述]

請你寫出勾股定理內(nèi)容(用文字語言表述):

[嘗試證明]

以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以(a+b)為高的直角梯形(如圖2),請你利用圖2,證明勾股定理.

查看答案和解析>>

同步練習(xí)冊答案