【題目】已知拋物線x軸分別交于A,0)、B,0)兩點(diǎn),直線=2x+t經(jīng)過點(diǎn)A.

(1)已知A、B兩點(diǎn)的橫坐標(biāo)分別為3、.

①當(dāng)a =1時(shí),直接寫出拋物線和直線相應(yīng)的函數(shù)表達(dá)式;

②如圖,已知拋物線3x4這一段位于直線的下方,在5x6這一段位于直線的上方,求a的取值范圍;

2)若函數(shù)的圖像與軸僅有一個(gè)公共點(diǎn),探求之間的數(shù)量關(guān)系.

【答案】(1) ①, ;②;

(2)。

【解析】試題分析:(1)①根據(jù)待定系數(shù)法,直接把A、B的點(diǎn)的坐標(biāo)直接可求解;

②根據(jù)題意, 由x=4與x=5可求解a的取值范圍;

(2)根據(jù)題意構(gòu)造出符合函數(shù)解析式,然后根據(jù)與x軸只有一個(gè)公共點(diǎn),可由y=0求解.

試題解析:(1) ,

,由題意可得,當(dāng),當(dāng), ;(2, , ,, ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加10件.

(1)求商場(chǎng)經(jīng)營該商品原來一天可獲利潤(rùn)多少元?

(2)設(shè)后來該商品每件降價(jià)x元,,商場(chǎng)一天可獲利潤(rùn)y元.

①若商場(chǎng)經(jīng)營該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?

②求出yx之間的函數(shù)關(guān)系式,結(jié)合題意寫出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于2160元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題ab,則|a||b|”______命題.(填

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中 ,AB=4,BC=3,點(diǎn)P在邊AB上.若將△DAP沿DP折疊 ,使點(diǎn)A落在矩形ABCD的對(duì)角線上,則AP的長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),則經(jīng)過后,點(diǎn)P與點(diǎn)Q第一次在△ABC的邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某超市舉行店慶活動(dòng),對(duì)甲、乙兩種商品實(shí)行打折銷售。打折前,購買3件甲商品和1件乙商品需用190元;購買2件甲商品和3件乙商品需用220元。而店慶期間,購買10件甲商品和10件乙商品僅需735元,這比不打折少花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AECD的延長(zhǎng)線交于點(diǎn)A, ,OEBC于點(diǎn)F.

(1)求證:OEBD;

(2)當(dāng)⊙O的半徑為5, 時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)2,4,x,2,4,7的眾數(shù)是2,則這組數(shù)據(jù)的平均數(shù),中位數(shù)分別為( 。

A. 3.5,3 B. 3,4 C. 3,3.5 D. 4,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,已知∠AOB=90°,COD=90°,OE為∠BOD的平分線,∠BOE=17°18′,求∠AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案