【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).
【答案】(1)證明見解析;(2)5cm.
【解析】
試題(1)根據(jù)題意可知AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,進而得到∠ADC=∠CEB=90°,再根據(jù)等角的余角相等可得∠BCE=∠DAC,從而得到結(jié)論;
(2)根據(jù)題意得:AD=4a,BE=3a,根據(jù)全等可得DC=BE=3a,由勾股定理可得(4a)2+(3a)2=252,再解即可.
試題解析:(1)根據(jù)題意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
(2)由題意得:AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,
在Rt△ACD中:AD2+CD2=AC2,
∴(4a)2+(3a)2=252,
∵a>0,
解得a=5,
答:砌墻磚塊的厚度a為5cm.
考點1.:全等三角形的應用2.勾股定理的應用.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.利用正方形網(wǎng)絡(luò)可以畫出長度為無理數(shù)的線段,如圖1中.請參考此方法按下列要求作圖:
(1)在圖1中以格點為頂點畫一個面積為17的正方形,并標出字母;
(2)在圖2中以格點為頂點畫一個三角形,使,,,并標出字母;
(3)猜想是何種特殊三角形.并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司有A、B兩種型號的客車共11輛,它們的載客量(不含司機)、日租金、車輛數(shù)如下表所示,已知這11輛客車滿載時可搭載乘客350人.
A型客車 | B型客車 | |
載客量(人/輛) | 40 | 25 |
日租金(元/輛) | 320 | 200 |
車輛數(shù)(輛) | a | b |
(1)求a、b的值;
(2)某校七年級師生周日集體參加社會實踐,計劃租用A、B兩種型號的客車共6輛,且租車總費用不超過1700元.
①最多能租用A型客車多少輛?
②若七年級師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則圖中陰影面積(△PEF和△PGH的面積和)等于( 。
A. 7 B. 8 C. 12 D. 14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=60°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點F,若∠ABD:∠ACF=2:3,則∠BEC的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,延長⊙O的直徑AB至點C,使得BC=AB,點P是⊙O上半部分的一個動點(點P不與A、B重合),連結(jié)OP,CP.
(1)∠C的最大度數(shù)為 ;
(2)當⊙O的半徑為3時,△OPC的面積有沒有最大值?若有,說明原因并求出最大值;若沒有,請說明理由;
(3)如圖2,延長PO交⊙O于點D,連結(jié)DB,當CP=DB時,求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知的邊平行于軸,點的坐標為,點的坐標為,點在第四象限,點是邊上的一個動點.
(1)若點在邊上,求點的坐標;
(2)若點在邊或上,點是與軸的交點如圖2,過點作軸的平行線過點作軸的平行線它們相交于點,將沿直線翻折,當點的對應點落在坐標軸上時,求點的坐標.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為美化校園,某學校將要購進A、B兩個品種的樹苗,已知一株A品種樹苗比一株B品種樹苗多20元,若買一株A品種樹苗和2株B品種樹苗共需110元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)學校若花費不超過4000元購入A、B兩種樹苗,已知A品種樹苗數(shù)量是B品種樹苗數(shù)量的一半,問此次至多購買B品種樹苗多少株?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com