【題目】計算下列各題

(1)

(2)

3

4

【答案】110;(2-7;(31;(4-1000.

【解析】

1)先去掉括號,然后按照有理數(shù)的加法運算方法進行計算即可;(2)先去掉括號,然后按照有理數(shù)的加法運算方法進行計算即可;(3)先去掉括號,然后將分母相同的加數(shù)相結(jié)合進行計算即可;(4)認真審題不難發(fā)現(xiàn):相鄰兩數(shù)之差為-1,整個計算式中共有2000個數(shù)據(jù),所以可以得到2000÷2=1000個(-1).

解:(1)原式=-1,5+20-8.5

=20-10

=10

2)原式=-7+10-8-2

=10-17

=-7;

3

=

=+ +-

=1+

=1.

(4) 1-2+3-4+5-6+…+1999-2000=-1×1000=-1000

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B= 60°.

1)如圖①.若點EF分別在邊AB、AD上,且BE=AF,求證:CEF是等邊三角形.

2)小明發(fā)現(xiàn),當(dāng)點EF分別在邊AB、AD上,且∠CEF=60°時,CEF也是等邊三角形,

并通過畫圖驗證了猜想;小麗通過探索,認為應(yīng)該以CE= EF為突破口,構(gòu)造兩個全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了CEF是等邊三角形.請你根據(jù)小倩的方法,寫出完整的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(3,0),B(2,﹣3),并且以x=1為對稱軸.

(1)求此函數(shù)的解析式;

(2)作出二次函數(shù)的大致圖象;

(3)在對稱軸x=1上是否存在一點P,使△PABPA=PB?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認真閱讀下面的材料,完成有關(guān)問題:

材料:在學(xué)習(xí)絕對值時,我們已了解絕對值的幾何意義,如|5-3|表示53在數(shù)軸上對應(yīng)的兩點之間的距離;又如|5+3|=|5--3|,所以|5+3|表示5、-3在數(shù)軸上對應(yīng)的兩點之間的距離。因此,一般地,點A,B在數(shù)軸上分別表示有理數(shù)a,b,那么A,B之間的距離(也就是線段AB的長度)可表示為|a-b|。

因此我們可以用絕對值的幾何意義按如下方法求的最小值;

即數(shù)軸上x1對應(yīng)的點之間的距離,即數(shù)軸上x2對應(yīng)的點之間的距離,把這兩個距離在同一個數(shù)軸上表示出來,然后把距離相加即可得原式的值.

設(shè)A、B、P三點對應(yīng)的數(shù)分別是1、2、x.

當(dāng)1x2時,即P點在線段AB上,此時;

當(dāng)x2時,即P點在B點右側(cè),此時 PAPBAB2PBAB;

當(dāng)x 1時,即P點在A點左側(cè),此時PAPBAB2PAAB;

綜上可知,當(dāng)1x2時(P點在線段AB上),取得最小值為1

請你用上面的思考方法結(jié)合數(shù)軸完成以下問題:

1)滿足x的取值范圍是 。

2)求的最小值為 ,最大值為 。

備用圖:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.

△ACB和△DCE的頂點都在格點上,ED的延長線交AB于點F.

(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

為了響應(yīng)學(xué)校提出的節(jié)能減排,低碳生活的倡議,班會課上小李建議每位同學(xué)都踐行雙面打印,節(jié)約用紙.他舉了一個實際例子:打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,總質(zhì)量為160.已知每頁薄型紙比厚型紙輕0.8克,求例子中的A4厚型紙每頁的質(zhì)量.(墨的質(zhì)量忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,

(1)先作的平分線交邊于點,再以點為圓心,長為半徑作

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)請你判斷(1)中的位置關(guān)系,并證明你的結(jié)論.

(3)若,,求出(1)中的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)使關(guān)于的分式方程的解為正數(shù),且使關(guān)于的不等式組的解集為,求符合條件的所有整數(shù)的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,已知直線經(jīng)過點A-6,0),它與y軸交于點B,By軸正半軸上,且OA=2OB

1)求直線的函數(shù)解析式

2)若直線也經(jīng)過點A-6,0),且與y軸交于點C,如果ΔABC的面積為6,求C點的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案