【題目】閱讀下面材料:
如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據(jù)學習以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進行轉(zhuǎn)化:
(2)構(gòu)造函數(shù),畫出圖象
設y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數(shù)圖象公共點的橫坐標,觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集

【答案】
(1)解:當x=0時,原不等式不成立;

當x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;

當x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1< ;


(2)解:


(3)±1和﹣4
(4)x>1或﹣4<x<﹣1
【解析】解:(2)
;(3)兩個函數(shù)圖象公共點的橫坐標是±1和﹣4.
則滿足y3=y4的所有x的值為±1和﹣4.
故答案是:±1和﹣4;(4)不等式x3+4x2﹣x﹣4>0即當x>0時,x2+4x﹣1> ,此時x的范圍是:x>1;
當x<0時,x2+4x﹣1< ,則﹣4<x<﹣1.
故答案是:x>1或﹣4<x<﹣1.
(2)首先確定二次函數(shù)的對稱軸,然后確定兩個點即可作出二次函數(shù)的圖象;(3)根據(jù)圖象即可直接求解;(4)根據(jù)已知不等式x3+4x2﹣x﹣4>0即當x>0時,x2+4x﹣1> ,;當x<0時,x2+4x﹣1< ,根據(jù)圖象即可直接寫出答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點F為弦AC的中點,連接OF并延長交⊙O于點D,過點D作⊙O的切線,交BA的延長線于點E.

(1)求證:AC∥DE;
(2)若OA=AE=4,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的是一個長,寬,高的長方體,現(xiàn)在把它等分為個棱長為的小正方體

說明你的分法;

把這個小正方體排成一排組成一個新長方體,這個新長方體與原長方體相比.表面積怎樣變化?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,EAD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=EAB,連接AG

1)如圖①,當EFAB相交時,若∠EAB=60°,求證:EG=AG+BG

2)如圖②,當EFCD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線AB:y=5x﹣5與x軸交于點A,與y軸交于點B,點C與點B關(guān)于原點O對稱,拋物線y=ax2+bx+c的對稱軸為直線x=3且過點A和C.

(1)求點A和點C的坐標;
(2)求拋物線y=ax2+bx+c的解析式;
(3)若拋物線y=ax2+bx+c的頂點為D,且在x軸上存在點P使得△DAP的面積為6,直接寫出滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是

(2)如圖2,在平面直角坐標系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點,求k的取值范圍.

(3)如圖3,在平面直角坐標系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運動,若射線OA上存在點到圓C的距離跨度為2,直接寫出圓心C的橫坐標xc的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應的數(shù)為﹣20,B點對應的數(shù)為100.

(1)請寫出與A,B兩點距離相等的點M所對應的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).

(3)若當電子螞蟻PB點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校剛完成一批結(jié)構(gòu)相同的學生宿舍的修建,這些宿舍地板需要鋪瓷磚,一天4名一級技工去鋪4個宿舍,結(jié)果還剩12 m2地面未鋪瓷磚;同樣時間內(nèi)6名二級技工鋪4個宿舍剛好完成,已知每名一級技工比二級技工一天多鋪3 m2瓷磚.

(1)求每個宿舍需要鋪瓷磚的地板面積.

(2)現(xiàn)該學校有20個宿舍的地板和36 m2的走廊需要鋪瓷磚,某工程隊有4名一級技工和6名二級技工,一開始有4名一級技工來鋪瓷磚,3天后,學校根據(jù)實際情況要求2天后必須完成剩余的任務,所以決定加入一批二級技工一起工作,問需要再安排多少名二級技工才能按時完成任務

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

查看答案和解析>>

同步練習冊答案