【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為﹣20,B點對應(yīng)的數(shù)為100.

(1)請寫出與A,B兩點距離相等的點M所對應(yīng)的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).

(3)若當(dāng)電子螞蟻PB點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).

【答案】(1)40;(2)28;(3)-260;

【解析】

(1)根據(jù)數(shù)軸和題意可以求得點M對應(yīng)的數(shù);
(2)根據(jù)題意可以列出相應(yīng)的方程,求出點C表示的數(shù);
(3)根據(jù)題意可以得到相應(yīng)的方程,求得點D表示的數(shù).

解:

(1)設(shè)到點A和點B的距離相等的點M對應(yīng)的數(shù)為m,

|m﹣(﹣20)|=|m﹣100|,

解得,m=40,

故答案為:40;

(2)由題意可得,

4x+6x=100﹣(﹣20),

解得,x=12,

C點表示的是:100﹣6×12=28,

C點表示的是28;

(3)由題意可得,

4y+[100﹣(﹣20)]=6y

解得,y=60

D點表示的是:100﹣6×60=﹣260,

D點表示的是﹣260.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

把兩個相同的數(shù)連接在一起就得到一個新數(shù),我們把它稱為“連接數(shù)”,例如:234234,3939…等,都是連接數(shù),其中,234234稱為六位連接數(shù),3939稱為四位連接數(shù).

(1)請寫出一個六位連接數(shù)   ,它   (填“能”或“不能”)被13整除.

(2)是否任意六位連接數(shù),都能被13整除,請說明理由.

(3)若一個四位連接數(shù)記為M,它的各位數(shù)字之和的3倍記為N,M﹣N的結(jié)果能被13整除,這樣的四位連接數(shù)有幾個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面相同的紙牌A,B,C,D,其正面分別是紅桃、方塊、黑桃、梅花,其中紅桃、方塊為紅色,黑桃、梅花為黑色.小明將這4張紙牌背面朝上洗勻后,摸出一張,將剩余3張洗勻后再摸出一張.請用畫樹狀圖或列表的方法求摸出的兩張牌均為黑色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當(dāng)x=﹣3或1時,y1=y2;
②當(dāng)﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補(bǔ)充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標(biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數(shù)圖象公共點的橫坐標(biāo),觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”期間,申老師一家自駕游去了離家170千米的某地,下面是他們離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)關(guān)系的圖像.

(1)他們出發(fā)半小時后,離家多少千米?

(2)求出AB段的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000/2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為1202

若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價8%,另外每套樓房贈送a元裝修基金;

方案二:降價10%,沒有其他贈送.

1)請寫出售價y(元/2)與樓層x1≤x≤23x取整數(shù))之間的函數(shù)關(guān)系式;

2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果方程x2+px+q=0的兩個根是x1x2,那么x1+x2=-px1x2=q,請根據(jù)以上結(jié)論,解決下列問題:

(1)已知x1、x2是方程x2+4x-2=0的兩個實數(shù)根,求+的值;

(2)已知方程x2+bx+c=0的兩根分別為+1、-1,求出b、c的值;

(3)關(guān)于x的方程x2+(m-1)x+m2-3=0的兩個實數(shù)根互為倒數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是

(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點,求k的取值范圍.

(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運動,若射線OA上存在點到圓C的距離跨度為2,直接寫出圓心C的橫坐標(biāo)xc的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設(shè)運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案