【題目】如圖,在直角坐標(biāo)系中,一次函數(shù)y=mx+nm≠0)和二次函數(shù)y=ax2+bx+ca≠0)的圖象交于A﹣3,0)和B兩點(diǎn),拋物線與x軸交于A、C兩點(diǎn),且C的橫坐標(biāo)在01之間(不含端點(diǎn)),下列結(jié)論正確的是( )

A. abc0 B. 3a﹣b0 C. 2a﹣b+m0 D. a﹣b2m﹣2

【答案】D

【解析】

根據(jù)二次函數(shù)開(kāi)口向下判斷出a0,再利用對(duì)稱軸判斷出b0,利用與y軸的交點(diǎn)位置判斷出c0,然后求出abc0;把點(diǎn)A坐標(biāo)代入函數(shù)解析式整理即可得到3a﹣b0;根據(jù)對(duì)稱軸求出2a﹣b0,一次函數(shù)圖象判斷出m0,從而得到2a﹣b+m0;根據(jù)x=﹣1時(shí)的函數(shù)值的大小列出不等式,再根據(jù)一次函數(shù)圖象表示出m、n的關(guān)系,然后整理即可得到a﹣b2m﹣2

解:A、由圖可知,二次函數(shù)圖象開(kāi)口向下,

所以,a0,

∵C的橫坐標(biāo)在01之間(不含端點(diǎn)),

∴﹣﹣1,

∴b2a,

∴b0,

y軸的交點(diǎn)Cy軸正半軸,

∴c0

∴abc0,故本選項(xiàng)錯(cuò)誤;

B、∵A﹣3,0)在二次函數(shù)圖象上,

∴9a﹣3b+c=0

∴3a﹣b=﹣c0,

∴3a﹣b0,故本選項(xiàng)錯(cuò)誤;

C、∵b2a,

∴2a﹣b0,

一次函數(shù)y=mx+n經(jīng)過(guò)第一三象限,

∴m0,

∴2a﹣b+m0,故本選項(xiàng)錯(cuò)誤;

D、x=﹣1時(shí),a﹣b+c﹣m+n,

一次函數(shù)經(jīng)過(guò)點(diǎn)(﹣3,0),

∴﹣3m+n=0,

∴n=3m

∴a﹣b﹣m+3m﹣c=2m﹣c,

由圖可知,c2

∴2m﹣c2m﹣2,

∴a﹣b2m﹣2,故本選項(xiàng)正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,ABC=90°,AB=5,BC=10,連接AC、BD,以BD為直徑的圓交AC于點(diǎn)E.若DE=3,則AD的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,等邊ABC內(nèi)接于⊙O,點(diǎn)P是劣弧上的一點(diǎn)(端點(diǎn)除外),延長(zhǎng)BPD,使BD=AP,連接CD.

(1)若AP過(guò)圓心O,如圖①,請(qǐng)你判斷PDC是什么三角形?并說(shuō)明理由;

(2)若AP不過(guò)圓心O,如圖②PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖矩形OABC的頂點(diǎn)O與平面直角坐標(biāo)系的原點(diǎn)重合,點(diǎn)AC分別在x,y軸上點(diǎn)B的坐標(biāo)為(-5,4),點(diǎn)D為邊BC上一點(diǎn),連接OD若線段OD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,點(diǎn)O恰好落在AB邊上的點(diǎn)E,則點(diǎn)E的坐標(biāo)為(

A. (-5,3) B. (-5,4) C. (-5, D. (-5,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與 y軸交于點(diǎn)B(0,2),與反比例函數(shù)的圖象交于點(diǎn)A (4,-1).

(1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式

(2)若點(diǎn)Cy軸上一點(diǎn),BC=BA請(qǐng)直接寫出點(diǎn)C的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=+mx+3x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),

1)求m的值及拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)P是拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).

(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;

(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹(shù)狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A﹣1,0)、C03),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BCDB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m。設(shè)AD的長(zhǎng)為xm,DC的長(zhǎng)為ym。

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

同步練習(xí)冊(cè)答案