【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m。設(shè)AD的長(zhǎng)為xm,DC的長(zhǎng)為ym。
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是整米數(shù),求出滿(mǎn)足條件的所有圍建方案。
【答案】解:(1)如圖,AD的長(zhǎng)為xm,DC的長(zhǎng)為ym,
根據(jù)題意,得,即。
∴y與x之間的函數(shù)關(guān)系式為。
(2)由,且x,y都為正整數(shù),
∴x可取1,2,3,4,5,6,10,12,15,20,30,60。
但∵,
∴符合條件的有:x=5時(shí),y=12;x=6時(shí),y=10;x=10時(shí),y=6。
答:滿(mǎn)足條件的所有圍建方案:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m。
【解析】(1)由面積為60m2列式即可得y與x之間的函數(shù)關(guān)系式。
(2)由和x,y都為正整數(shù)列舉出所有x值,根據(jù)得出符合條件的值即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤b2>4ac;其中正確的結(jié)論有______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),點(diǎn)C是拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線(xiàn)的解析式;
(2)求△ABC的面積;
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請(qǐng)說(shuō)明理由;若存在,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F.
(1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)D落在線(xiàn)段BE上時(shí),AD與BC交于點(diǎn)H.
①求證△ADB≌△AOB;
②求點(diǎn)H的坐標(biāo).
(3)記K為矩形AOBC對(duì)角線(xiàn)的交點(diǎn),S為△KDE的面積,求S的取值范圍(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).
(1)求拋物線(xiàn)的解析式及它的對(duì)稱(chēng)軸;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線(xiàn)段BC所在直線(xiàn)的解析式;
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線(xiàn)于點(diǎn)E,若AB=,BD=2,則OE的長(zhǎng)等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究:如圖,在平面直角坐標(biāo)系中,Rt△AOC的直角邊OC在y軸正半軸上,且頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)A的坐標(biāo)為(2,4),直線(xiàn)y=-x+b過(guò)點(diǎn)A,與x軸交于點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo)及直線(xiàn)AB的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)的速度,沿O-C-A的路線(xiàn)向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從點(diǎn)B出發(fā),以相同的速度沿BO的方向向O運(yùn)動(dòng),過(guò)點(diǎn)M作MQ⊥x軸,交線(xiàn)段BA或線(xiàn)段AO于點(diǎn)Q,當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)P和點(diǎn)M都停止運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,設(shè)動(dòng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.△APQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)是否存在以M、P、Q為頂點(diǎn)的三角形的面積與S相等?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線(xiàn)l與⊙O相切于點(diǎn)C時(shí),若∠DAC=30°,求∠BAC的大;
(2)如圖②,當(dāng)直線(xiàn)l與⊙O相交于點(diǎn)E、F時(shí),若∠DAE=18°,求∠BAF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線(xiàn)交BC于E,交DC的延長(zhǎng)線(xiàn)于F,BG⊥AE于G,BG=,則△EFC的面積是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com