【題目】已知:如圖,⊙O的直徑AB與弦CD相交于點(diǎn)E,且ECD中點(diǎn),過點(diǎn)BCD的平行線交弦AD的延長線于點(diǎn)F .

1)求證:BF是⊙O的切線;

2)連結(jié)BC,若⊙O的半徑為2tanBCD=,求線段AD的長.

【答案】1)見解析;(2

【解析】

1)由垂徑定理可證ABCD,由CDBF,得ABBF,則BF是⊙O的切線;

2)連接BD,根據(jù)同弧所對圓周角相等得到∠BCD =BAD,再利用圓的性質(zhì)得到∠ADB=90°, tanBCD= tanBAD= ,得到BDAD的關(guān)系,再利用解直角三角形可以得到BDAD與半徑的關(guān)系,進(jìn)一步求解即可得到答案.

1)證明:∵ O的直徑AB與弦CD相交于點(diǎn)E,且ECD中點(diǎn)

AB CD, AED =90°

CD // BF

ABF =AED =90°

ABBF

AB是⊙O的直徑

BF是⊙O的切線

2)解:連接BD

∵∠BCD、∠BAD是同弧所對圓周角

∴∠BCD =BAD

AB是⊙O的直徑

∴∠ADB=90°

tanBCD= tanBAD=

∴設(shè)BD=3x,AD=4x

AB=5x

O的半徑為2,AB=4

5x=4x=

AD=4x=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P和點(diǎn)關(guān)于x軸對稱,點(diǎn)和點(diǎn)關(guān)于直線l對稱,則稱點(diǎn)是點(diǎn)P關(guān)于x軸,直線l的二次對稱點(diǎn).

1)如圖1,點(diǎn)A(0-1)

①若點(diǎn)B是點(diǎn)A關(guān)于x軸,直線x=2的二次對稱點(diǎn),則點(diǎn)B的坐標(biāo)為

②點(diǎn)C (-4,1)是點(diǎn)A關(guān)于x軸,直線x=a的二次對稱點(diǎn),則a的值為

③點(diǎn)D(-1,0)是點(diǎn)A關(guān)于x軸,直線的二次對稱點(diǎn),則直線的表達(dá)式為 ;

2)如圖2O的半徑為2.若O上存在點(diǎn)M,使得點(diǎn)M′是點(diǎn)M關(guān)于x軸,直線x = b的二次對稱點(diǎn),且點(diǎn)M′在射線x≥0)上,b的取值范圍是

3E(0,t)y軸上的動(dòng)點(diǎn),E的半徑為2,若E上存在點(diǎn)N,使得點(diǎn)N′是點(diǎn)N關(guān)于x軸,直線的二次對稱點(diǎn),且點(diǎn)N′x軸上,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角中,,以點(diǎn)C為圓心,BC為半徑的圓交AB于點(diǎn)D,交AC于點(diǎn)E.

,求弧DE的度數(shù);

,,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備購買若干臺型電腦和型打印機(jī).如果購買1型電腦,2型打印機(jī),一共需要花費(fèi)6200元;如果購買2型電腦,1型打印機(jī),一共需要花費(fèi)7900元.

1)求每臺型電腦和每臺型打印機(jī)的價(jià)格分別是多少元?

2)如果學(xué)校購買型電腦和型打印機(jī)的預(yù)算費(fèi)用不超過20000元,并且購買型打印機(jī)的臺數(shù)要比購買型電腦的臺數(shù)多1臺,那么該學(xué)校至多能購買多少臺型打印機(jī)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一農(nóng)戶要建一個(gè)矩形雞舍,雞舍的一邊利用長為a米的墻,另外三邊用25米長的籬笆圍成,為方便進(jìn)出,在垂直于墻的一邊CD上留一個(gè)1米寬的門,

1)若a12,問矩形的邊長分別為多少時(shí),雞舍面積為802

2)問a的值在什么范圍時(shí),(1)中的解有兩個(gè)?一個(gè)?無解?

3)若住房墻的長度足夠長,問雞舍面積能否達(dá)到90平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過、三點(diǎn).

1)求該二次函數(shù)的解析式;

2)若點(diǎn)M是該二次函數(shù)圖象上的一點(diǎn),且滿足,求點(diǎn)M的坐標(biāo);

3)點(diǎn)P是該二次函數(shù)圖象上位于一象限上的一動(dòng)點(diǎn),連接PA分別交BC,y軸與點(diǎn)EF,若、的面積分別為,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知均為等腰三角形,,,將這兩個(gè)三角形放置在一起.

1)問題發(fā)現(xiàn)

如圖①,當(dāng)時(shí),點(diǎn)、在同一直線上,連接,則的度數(shù)為__________,線段、、之間的數(shù)量關(guān)系是__________;

2)拓展探究

如圖②,當(dāng)時(shí),點(diǎn)、、在同一直線上,連接.請判斷的度數(shù)及線段、、之間的數(shù)量關(guān)系,并說明理由;

3)解決問題

如圖③,,,,連接、,在繞點(diǎn)旋轉(zhuǎn)的過程中,當(dāng)時(shí),請直接寫出的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線上有兩點(diǎn),,連接,,直線軸于點(diǎn),點(diǎn)到兩坐標(biāo)軸的距離相等.點(diǎn)到兩坐標(biāo)軸的距離也相等.

1)求點(diǎn),的坐標(biāo)并直接寫出的形狀;

2)若點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn),重合),連接,當(dāng)為等腰三角形時(shí),求點(diǎn)的坐標(biāo);

3)若點(diǎn)軸上一動(dòng)點(diǎn),當(dāng)是以為斜邊的直角三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的外接圓,連結(jié)OAOB、OC,延長BOAC交于點(diǎn)D,與交于點(diǎn)F,延長BA到點(diǎn)G,使得,連接FG.

備用圖

1)求證:FG的切線;

2)若的半徑為4.

①當(dāng),求AD的長度;

②當(dāng)是直角三角形時(shí),求的面積.

查看答案和解析>>

同步練習(xí)冊答案