【題目】如圖,在正方形ABCD中,AB=3cm,動點(diǎn)M自A點(diǎn)出發(fā)沿AB方向以每秒1cm的速度運(yùn)動,同時動點(diǎn)N自A點(diǎn)出發(fā)沿折線AD﹣DC﹣CB以每秒3cm的速度運(yùn)動,到達(dá)B點(diǎn)時運(yùn)動同時停止.設(shè)△AMN的面積為y(cm2).運(yùn)動時間為x(秒),則下列圖象中能大致反映y與x之間函數(shù)關(guān)系的是( )
A.
B.
C.
D.
【答案】B
【解析】解:當(dāng)點(diǎn)N在AD上時,即0≤x≤1,S△AMN= ×x×3x= x2 ,
點(diǎn)N在CD上時,即1≤x≤2,S△AMN= ×x×3= x,y隨x的增大而增大,所以排除A、D;
當(dāng)N在BC上時,即2≤x≤3,S△AMN= ×x×(9﹣3x)=﹣ x2+ x,開口方向向下.
故選:B.
當(dāng)點(diǎn)N在AD上時,易得S△AMN的關(guān)系式;當(dāng)點(diǎn)N在CD上時,高不變,但底邊在增大,所以S△AMN的面積關(guān)系式為一個一次函數(shù);當(dāng)N在BC上時,表示出S△AMN的關(guān)系式,根據(jù)開口方向判斷出相應(yīng)的圖象即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是( )
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+2的圖象經(jīng)過點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)若點(diǎn)Q(m,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),P是線段AB上的一個動點(diǎn)(不與A、B重合),經(jīng)過點(diǎn)P分別作PD∥BQ交AQ于點(diǎn)D,PE∥AQ交BQ于點(diǎn)E. ①判斷四邊形PDQE的形狀;并說明理由;
②連接DE,求出線段DE的長度范圍;
③如圖2,在拋物線上是否存在一點(diǎn)F,使得以P、F、A、C為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)F和點(diǎn)P坐標(biāo);若不存在,說明理由.
(3)當(dāng)r=2 時,在P1(0,2),P2(﹣2,4),P3(4 ,2),P4(0,2﹣2 )中,求可以成為正方形ABCD的“等距圓”的圓心的坐標(biāo)?
(4)若點(diǎn)P坐標(biāo)為(﹣3,6),則當(dāng)⊙P的半徑r為多長時,⊙P是正方形ABCD的“等距圓”.試判斷此時⊙P與直線AC的位置關(guān)系?并說明理由.
(5)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點(diǎn)F的坐標(biāo)為(6,2),頂點(diǎn)E、H在y軸上,且點(diǎn)H在點(diǎn)E的上方.若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進(jìn)價(jià)是30元/件的商品,在市場試銷中的日銷售量y件與銷售價(jià)x元之間滿足一次函數(shù)關(guān)系.
(1)請借助以下記錄確定y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
x | 35 | 40 | 45 | 50 |
y | 57 | 42 | 27 | 12 |
(2)若日銷售利潤為P元,根據(jù)上述關(guān)系寫出P關(guān)于x的函數(shù)關(guān)系式,并指出當(dāng)銷售單價(jià)x為多少元時,才能獲得最大的銷售利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點(diǎn)C,從觀測點(diǎn)C測得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為邊CD上一點(diǎn),將△ADE沿AE折疊至△AD′E處,AD′與CE交于點(diǎn)F.若∠B=52°,∠DAE=20°,則∠FED′的大小為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,屬于真命題的共有( ) ①相等的圓心角所對的弧相等 ②若 = ,則a、b都是非負(fù)實(shí)數(shù)
③相似的兩個圖形一定是位似圖形 ④三角形的內(nèi)心到這個三角形三邊的距離相等.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com