【題目】已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是(
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3

【答案】D
【解析】解:根據(jù)圖象可知,拋物線的對稱軸為x=1,拋物線與x軸的一個交點為(﹣1,0), 則(﹣1,0)關于x=1對稱的點為(3,0),
即拋物線與x軸另一個交點為(3,0),
所以y<0時,x的取值范圍是﹣1<x<3.
故選D.
【考點精析】利用拋物線與坐標軸的交點對題目進行判斷即可得到答案,需要熟知一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,F(xiàn)G= ,DF=2BF,求AH的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質進行了探究.探究過程如下,請補充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

n

3

其中,m= , n=
(2)根據(jù)表格數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質:①;②
(4)進一步探究函數(shù)圖象發(fā)現(xiàn): ①函數(shù)圖象與x軸有個交點,所以對應的方程x2﹣2|x|=0有個實數(shù)根;
②方程x2﹣2|x|=2有個實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是ABCD的邊AD的中點,BE與AC相交于點P,則SAPE:SBCP=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D是BC上一點,∠DAC=∠B,E為AB上一點.
(1)求證:△CAD∽△CBA;
(2)若BD=10,DC=8,求AC的長;
(3)在(2)的條件下,若DE∥AC,AE=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實數(shù),該二次函數(shù)圖象與x軸總有兩個交點;
(2)若該二次函數(shù)圖象經(jīng)過點(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁4位同學進行一次乒乓球單打比賽,要從中選2名同學打第一場比賽.
(1)已確定甲同學打第一場比賽,再從其余3名同學中隨機選取1名,恰好選中乙同學的概率是多少?;
(2)隨機選取2名同學,求其中有乙同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3cm,動點M自A點出發(fā)沿AB方向以每秒1cm的速度運動,同時動點N自A點出發(fā)沿折線AD﹣DC﹣CB以每秒3cm的速度運動,到達B點時運動同時停止.設△AMN的面積為y(cm2).運動時間為x(秒),則下列圖象中能大致反映y與x之間函數(shù)關系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.

(1)求證:AE=BG
(2)將正方形DEFG繞點D逆時針方向旋轉α(0°<α≤360°)如圖2所示,判斷(1)中的結論是否仍然成立?如果仍成立,請給予證明;如果不成立,請說明理由;
(3)若BC=DE=4,當旋轉角α為多少度時,AE取得最大值?直接寫出AE取得最大值時α的度數(shù),并利用備用圖畫出這時的正方形DEFG,最后求出這時AF的值.

查看答案和解析>>

同步練習冊答案