【題目】如圖,中,點,分別是邊,上的點,,點是邊上的一點,連接交線段于點,且,,,則S四邊形BCED( )
A.B.C.D.
【答案】B
【解析】
由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形對應成比例可得,得到HC=5,再根據(jù)相似三角形的面積比等于相似比的平方可得,S△ABC=40.5,再減去△ADE的面積即可得到四邊形BCED的面積.
解:∵,,
∴GE=4
∵
∴△ADG∽△ABH,△AGE∽△AHC
∴
即,
解得:HC=6
∵DG:GE=2:1
∴S△ADG:S△AGE=2:1
∵S△ADG=12
∴S△AGE=6,S△ADE= S△ADG+S△AGE=18
∵
∴△ADE∽△ABC
∴S△ADE:S△ABC=DE2:BC2
解得:S△ABC=40.5
S四邊形BCED= S△ABC- S△ADE=40.5-18=22.5
故答案選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)已知矩形AOCD在平面直角坐標系xOy中,∠CAO=60°,OA=2,B點的坐標為(2,0),動點M以每秒2個單位長度的速度沿A→C→B運動(M點不與點A、點B重合),設運動時間為t秒.
(1)求經(jīng)過B、C、D三點的拋物線解析式;
(2)點P在(1)中的拋物線上,當M為AC中點時,若△PAM≌△PDM,求點P的坐標;
(3)當點M在CB上運動時,如圖(2)過點M作ME⊥AD,MF⊥x軸,垂足分別為E、F,設矩形AEMF與△ABC重疊部分面積為S,求S與t的函數(shù)關系式,并求出S的最大值;
(4)如圖(3)點P在(1)中的拋物線上,Q是CA延長線上的一點,且P、Q兩點均在第三象限內,Q、A是位于直線BP同側的不同兩點,若點P到x軸的距離為d,△QPB的面積為2d,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校游戲節(jié)活動中,設計了一個有獎轉盤游戲,如圖,A轉盤被分成三個面積相等的扇形,B轉盤被分成四個面積相等的扇形,每一個扇形都標有相應的數(shù)字,先轉動A轉盤,記下指針所指區(qū)域內的數(shù)字,再轉動B轉盤,記下指針所指區(qū)域內的數(shù)字(當指針在邊界線上時,重新轉動轉盤,直到指針指向一個區(qū)域內為止)
(1)請利用畫樹狀圖或列表的方法(只選其中一種),表示出轉轉盤可能出現(xiàn)的所有結果;
(2)如果將兩次轉轉盤指針所指區(qū)域的數(shù)據(jù)相乘,乘積是無理數(shù)時獲得一等獎,那么獲得一等獎的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,BC=6,點D、E分別是邊AB、AC上的動點(點D、E不與△ABC的頂點重合),AD和BE交于點F,且∠AFE=∠ABC
(1)求證:△ABD∽△BCE;
(2)設AE=x,ADFD=y,求y關于x的函數(shù)關系式,并直接寫出x的取值范圍;
(3)當△AEF是等腰三角形時,求DF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,0),B(0,4),現(xiàn)以A點為位似中心,相似比為9:4,將OB向右側放大,B點的對應點為C.
(1)求C點坐標及直線BC的解析式:
(2)點P從點A開始以每秒2個單位長度的速度勻速沿著x軸向右運動,若運動時間用t秒表示.△BCP的面積用S表示,請你直接寫出S與t的函數(shù)關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與軸交于,兩點,與軸交于點,已知點,且對稱軸為直線.
(1)求該拋物線的解析式;
(2)點是第四象限內拋物線上的一點,當的面積最大時,求點的坐標;
(3)如圖2,點是拋物線上的一個動點,過點作軸,垂足為.當時,直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,平分,交軸于點,點是軸上一點,經(jīng)過點、,與軸交于點,過點作,垂足為,的延長線交軸于點,
(1)求證:為的切線;
(2)求的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側作弧,交于兩點M、N;第二步,連結MN,分別交AB、AC于點E、F;第三步,連結DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com