【題目】如圖,在同一坐標(biāo)系下,一次函數(shù)與二次函數(shù)的圖象大致可能是( 。

A. B. C. D.

【答案】C

【解析】

根據(jù)一次函數(shù)的圖象得出ab的范圍再驗(yàn)證二次函數(shù)圖象在該項(xiàng)中是否正確,從而得出答案.

A項(xiàng),根據(jù)一次函數(shù)yaxb的圖象可得,a0,b0,所以二次函數(shù)的圖象應(yīng)開口向下,圖中二次函數(shù)的開口向上,A項(xiàng)不正確;

B項(xiàng),根據(jù)一次函數(shù)圖象可得,a0,b0,所以二次函數(shù)的圖象應(yīng)開口向下,其對稱軸x0,即對稱軸應(yīng)在y軸左邊,圖中二次函數(shù)的對稱軸在y軸右邊,故B項(xiàng)不正確;

C項(xiàng),根據(jù)一次函數(shù)圖象可得,a0,b0,所以二次函數(shù)的圖象應(yīng)開口向上,其對稱軸x0,即對稱軸應(yīng)在y軸左邊,圖中符合,故C項(xiàng)正確;

D項(xiàng),根據(jù)一次函數(shù)圖象可得,a0,b0,所以二次函數(shù)的圖象應(yīng)開口向上,圖中開口向下,D項(xiàng)不正確,從而得到答案選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,∠D100°,∠DAB的平分線AEDC于點(diǎn)E,連接BE,AE=AB,則∠EBC的度數(shù)為(

A.30°B.50°C.80°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是邊長為4的正方形,點(diǎn)P是平面內(nèi)一點(diǎn).且滿足BP⊥PC,現(xiàn)將點(diǎn)P繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90度,則CQ的最大值=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點(diǎn)E在線段AD上,若AF=4,F=60°.

(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

(2)DE的長度和∠EBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊BCD中,DFBC于點(diǎn)F,點(diǎn)A為直線DF上一動(dòng)點(diǎn),以B為旋轉(zhuǎn)中心,把BA順時(shí)針方向旋轉(zhuǎn)60°BE,連接EC

(1)當(dāng)點(diǎn)A在線段DF的延長線上時(shí),

求證:DA=CE;

判斷DECEDC的數(shù)量關(guān)系,并說明理由;

(2)當(dāng)DEC=45°時(shí),連接AC,求BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場代銷甲、乙兩種商品,其中甲種商品進(jìn)價(jià)為120/件,售價(jià)為130/件,乙種商品進(jìn)價(jià)為100/件,售價(jià)為150/件.

1)若商場用36000元購進(jìn)這兩種商品若干,銷售完后可獲利潤6000元,則該商場購進(jìn)甲、乙兩種商品各多少件?(列方程組解答)

2)若商場購進(jìn)這兩種商品共100件,設(shè)購進(jìn)甲種商品x件,兩種商品銷售后可獲總利潤為y元,請寫出yx的函數(shù)關(guān)系式(不要求寫出自變量x的范圍),并指出購進(jìn)甲種商品件數(shù)x逐漸增加時(shí),總利潤y是增加還是減少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,∠B30°,∠ACB100°AE平分∠BAC,求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB90°,點(diǎn)CD分別在射線OA,OB上,CE是∠ACD的平分線,CE的反向延長線與∠CDO的平分線交于點(diǎn)F

1)當(dāng)∠OCD56°(如圖①),試求∠F;

2)當(dāng)CD在射線OA、OB上任意移動(dòng)時(shí)(不與點(diǎn)O重合)(如圖②),∠F的大小是否變化?若變化,請說明理由若不變化求出∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn)是正方形ABCD的對角線AC上的兩點(diǎn),且AE=CF.

(1)求證:四邊形BEDF是菱形;

(2)若正方形ABCD的邊長為4,AE=,求菱形BEDF的面積.

查看答案和解析>>

同步練習(xí)冊答案