【題目】已知:如圖,在△ABC中,BCAC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DEAC,垂足為點(diǎn)E

1)求證:點(diǎn)DAB的中點(diǎn);

2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

3)若⊙O的直徑為10tanB3,求DE的長.

【答案】1)見解析;(2DE是⊙O的切線,證明見解析;(33

【解析】

1)連接CD,利用圓中直徑所對的圓周角等于90°以及等腰三角形的性質(zhì)即可解決問題;

2)連接OD,先得出OD為△ABC的中位線,再由平行線的性質(zhì)可證明DE⊥OD,從而得出結(jié)論;

3)在Rt△BCD中,tanB3,設(shè)BDk,則CD3k,則根據(jù)勾股定理可求出k的值,然后利用面積法可知ADDCACDE,由此即可解決問題.

1)證明:連接CD

BC是⊙O的直徑,

∴∠BDC90°,

CDAB,

CBCA

BDAD,

∴點(diǎn)DAB的中點(diǎn);

2)解:結(jié)論:DE是⊙O的切線.

證明如下:連接OD

BDAD,BOOC,

ODAC,

DEAC

DEOD,

DE是⊙O的切線;

3)解:在RtBCD中,tanB3,設(shè)BDk,則CD3k,

則根據(jù)勾股定理得:9k2+k2100,

k或﹣(舍去),

CD3,ADBD,ACCB10,

∵SACD=ADDCACDE

∴DE3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知邊長為4的正方形鋼板有一個(gè)角銹蝕,其中AF2,BF1,為了合理利用這塊鋼板.將在五邊形EABCD內(nèi)截取一個(gè)矩形塊MDNP,使點(diǎn)PAB上,且要求面積最大,求鋼板的最大利用率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,只改變正方形的形狀,得到四邊形,且,則四邊形與正方形的面積的比是( 。

A.1:1B.2:3C.:2D.3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點(diǎn),點(diǎn),與y軸交于點(diǎn)C,且過點(diǎn).點(diǎn)PQ是拋物線上的動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P在直線OD下方時(shí),求面積的最大值.

(3)直線OQ與線段BC相交于點(diǎn)E,當(dāng)相似時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20141月至201612月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖:

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8月份

D.各年1月至6月的月接待游客量相對7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品原價(jià)為100元,第一次漲價(jià),第二次在第一次的基礎(chǔ)上又漲價(jià),設(shè)平均每次增長的百分?jǐn)?shù)為x,那么x應(yīng)滿足的方程是  

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果公司新購進(jìn)10000千克柑橘,每千克柑橘的成本為9. 柑橘在運(yùn)輸、存儲(chǔ)過程中會(huì)有損壞,銷售人員從所有的柑橘中隨機(jī)抽取若干柑橘,進(jìn)行柑橘損壞率統(tǒng)計(jì),并把獲得的數(shù)據(jù)記錄如下:

柑橘總重量n/千克

50

100

150

200

250

300

350

400

450

500

損壞柑橘重量m/千克

5.50

10.50

15.15

19.42

24.25

30.93

35.32

39.24

44.57

51.54

柑橘損壞的頻率

0.110

0.105

0.101

0.097

0.097

0.103

0.101

0.098

0.099

0.103

根據(jù)以上數(shù)據(jù),估計(jì)柑橘損壞的概率為 (結(jié)果保留小數(shù)點(diǎn)后一位);由此可知,去掉損壞的柑橘后,水果公司為了不虧本,完好柑橘每千克的售價(jià)至少為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:如圖,二次函數(shù)經(jīng)過點(diǎn)B40)和點(diǎn)E-2,-3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為A.點(diǎn)D是線段BE上的動(dòng)點(diǎn),過點(diǎn)DDFBE,交y軸于點(diǎn)F,交拋物線于點(diǎn)P

1)求出拋物線和直線BE的解析式;

2)當(dāng)△DCF≌△BOC時(shí),求出此時(shí)點(diǎn)D的坐標(biāo);

3)設(shè)點(diǎn)P的橫坐標(biāo)為m

①請寫出線段PD的長度為(用含m的式子表示);

②當(dāng)m為何值時(shí),線段PD有最大值,并寫出其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案