【題目】在平行四邊形中,為對(duì)角線(xiàn),,點(diǎn)分別為邊上的點(diǎn),連接平分.

1)如圖,若,求平行四邊形的面積.

2)如圖,若過(guò)求證:

【答案】(1)50;(2)詳見(jiàn)解析

【解析】

1)過(guò)點(diǎn)AAHBC,根據(jù)角平分線(xiàn)的性質(zhì)可求出AH的長(zhǎng)度,再根據(jù)平行四邊形的性質(zhì)與∠B的正弦值可求出AD,最后利用面積公式即可求解;

2)截取FM=FG,過(guò)FFNAFAC延長(zhǎng)線(xiàn)于點(diǎn)N,利用SAS證明,根據(jù)全等的性質(zhì)、各角之間的關(guān)系及平行四邊形的性質(zhì)可證明,從而得到為等腰直角三角形,再利用ASA證明全等,最后根據(jù)全等的性質(zhì)即可證明結(jié)論.

解:(1)過(guò)

平分,

,

∵四邊形是平行四邊形,

∴∠B=D,

sinB=sinD=,

又∵,,

;

2)在上截取,過(guò)延長(zhǎng)線(xiàn)于點(diǎn),

平分

,

中,,

SAS),

,,

又∵,

,

,

,

,

又∵平行四邊形中:,且,

,

,

又∵

,

,即為等腰直角三角形,

,

,

又∵

,

,

中,,

ASA),

∵在中,,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,

①寫(xiě)出A、B、C的坐標(biāo).

②以原點(diǎn)O為對(duì)稱(chēng)中心,畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出A1、B1、C1的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,O是正方形ABCD的外接圓P是O上不與A、B重合的任意一點(diǎn),APB等于( )

A45° B.60° C.45° 或135° D.60° 或120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y-x-3x軸,y軸分別交于點(diǎn)A,C,經(jīng)過(guò)點(diǎn)AC的拋物線(xiàn)yax2+bx3x軸的另一個(gè)交點(diǎn)為點(diǎn)B(2,0),點(diǎn)D是拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)DDEx軸于點(diǎn)E,連接AD,DC.設(shè)點(diǎn)D的橫坐標(biāo)為m

(1)求拋物線(xiàn)的解析式;

(2)當(dāng)點(diǎn)D在第三象限,設(shè)△DAC的面積為S,求Sm的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)D的坐標(biāo);

(3)連接BC,若∠EAD=∠OBC,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形中,點(diǎn)為靠近點(diǎn)的四等分點(diǎn),點(diǎn)中點(diǎn),將沿翻折得到連接則點(diǎn)所在直線(xiàn)距離為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+b的圖象與x軸交點(diǎn)為A(﹣3,0),與y軸交點(diǎn)為B,且與正比例函數(shù)yx的圖象交于點(diǎn)Cm4

1)求m的值及一次函數(shù)ykx+b的表達(dá)式;

2)觀察函數(shù)圖象,直接寫(xiě)出關(guān)于x的不等式x≤kx+b的解集;

3)若Py軸上一點(diǎn),且△PBC的面積是8,直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD中,M、N分別為ABCD的中點(diǎn).

(1)求證:四邊形AMCN是平行四邊形;

(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓內(nèi)接四邊形ABCD,AB是⊙O的直徑,ODABC于點(diǎn)E

1)求證:BCD為等腰三角形;

2)若BE4,AC6,求DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)()圖象的頂點(diǎn)為,其圖象與軸的交點(diǎn),的橫坐標(biāo)分別為3.下列結(jié)論:

;②;③;④當(dāng)時(shí),是等腰直角三角形.其中結(jié)論正確的個(gè)數(shù)是(  )

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案