【題目】如表:方程1、方程2、方程3…是按照一定規(guī)律排列的一列方程:

序號(hào)

方程

方程的解

1

1

x13,x24

2

1

x14,x26

3

1

x15,x28

1)若方程1ab)的解是x16,x210,則a_____b_____

2)請(qǐng)寫(xiě)出這列方程中第n個(gè)方程:_____ 方程的解:_____

【答案】12, 5 , x12n+2,x22n+2

【解析】

首先根據(jù)已知方程兩個(gè)重要數(shù)字、方程的解,找出與方程序號(hào)之間的關(guān)系,寫(xiě)出第n個(gè)方程,即可同時(shí)求出(1)、(2)兩個(gè)問(wèn)題答案.

1)根據(jù)已知方程序號(hào)、方程兩個(gè)重要數(shù)字、方程的解發(fā)現(xiàn)以下規(guī)律:

序號(hào)1,62×1+4 21+1 31+2 42×1+2;

序號(hào)2,82×2+4 32+1 42+2 62×2+2;

序號(hào)3102×3+4 43+1 52+2 82×3+2;

序號(hào)4122×4+4 54+1 64+2 102×4+2;

由序號(hào)4可以發(fā)現(xiàn)方程ab)解x16x210,

122×4+4 54+1,

a12,b5

故答案為:12,5

2)由(1)分析得:

序號(hào)n2n+42×n+4 n+1n+1 n+2n+2 2n+22×n+2;

∴這列方程中第n個(gè)方程:,且方程的解為:x1n+2,x22n+2

故答案為:,x1n+2,x22n+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動(dòng)點(diǎn),PEAB EPFAC F,M EF 中點(diǎn),則 AM 的最小值為(

A.1B.1.3C.1.2D.1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓上有五個(gè)點(diǎn),這五個(gè)點(diǎn)將圓分成五等份(每一份稱為一段弧長(zhǎng)),把這五個(gè)點(diǎn)按順時(shí)針?lè)较蛞来尉幪?hào)為1,23,45,若從某一點(diǎn)開(kāi)始,沿圓周順時(shí)針?lè)较蛐凶,點(diǎn)的編號(hào)是數(shù)字幾,就走幾段弧長(zhǎng),則稱這種走法為一次“移位”.如:小明在編號(hào)為3的點(diǎn),那么他應(yīng)走3段弧長(zhǎng),即從3451為第一次“移位”,這時(shí)他到達(dá)編號(hào)為1的點(diǎn),然后從12為第二次“移位”.若小明從編號(hào)為4的點(diǎn)開(kāi)始,第2020次“移位”后,他到達(dá)編號(hào)為______的點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小劉同學(xué)在一次課外活動(dòng)中,用硬紙片做了兩個(gè)直角三角形,在中,,,;在中,,,.圖①是小劉同學(xué)所做的一個(gè)數(shù)學(xué)探究:他將的直角邊的斜邊重合在一起,并將沿方向移動(dòng).在移動(dòng)過(guò)程中,、兩點(diǎn)始終在邊上(移動(dòng)開(kāi)始時(shí)點(diǎn)與點(diǎn)重合).

(1)在沿方向移動(dòng)的過(guò)程中,小劉發(fā)現(xiàn):、兩點(diǎn)間的距離逐漸 ;連接后,的度數(shù)逐漸 .(填“不變”、“變大”或“變小”);

(2)小劉同學(xué)經(jīng)過(guò)進(jìn)一步地研究,編制了如下問(wèn)題:

問(wèn)題①:如圖②,當(dāng)、的連線與平行時(shí),求平移距離的長(zhǎng);

問(wèn)題②:如圖③,在的移動(dòng)過(guò)程中,的值是否為定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸于點(diǎn)A(a,0),交軸于點(diǎn),且,滿足,直線于點(diǎn).

1________________;并求直線的解析式;

2)過(guò)點(diǎn)軸于點(diǎn),求點(diǎn)的坐標(biāo);

3)在直線上是否存在一點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:任意兩個(gè)數(shù)a,b,按規(guī)則c=a+b得到一個(gè)新數(shù)c,稱所得的新數(shù)c為數(shù)ab傳承數(shù)。

(1)a=1,b=2,求a,b傳承數(shù)”c;

(2)a=1,b=,+3x+1=0,求a,b傳承數(shù)”c;

(3)a=2n+1,b=n1,且a,b傳承數(shù)”c值為一個(gè)整數(shù),則整數(shù)n的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的紙箱里裝有紅、黃、藍(lán)三種顏色的小球,它們除顏色外完全相同,其中紅球有2 個(gè),黃球有1個(gè),藍(lán)球有1個(gè).現(xiàn)有一張電影票,小明和小亮決定通過(guò)摸球游戲定輸贏,贏的一方得電影票.

(1)游戲規(guī)則1:兩人各摸1個(gè)球,先由小明從紙箱里隨機(jī)摸出1個(gè)球,記錄顏色后放回,將小球搖勻,再由小亮隨機(jī)摸出1個(gè)球.若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)你利用樹(shù)狀圖或列表法說(shuō)明理由.

(2)游戲規(guī)則2; 兩人同時(shí)各摸1個(gè)球,若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個(gè)游戲小明贏得電影票的概率為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題呈現(xiàn):如圖1,點(diǎn)E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD(S表示面積)

實(shí)驗(yàn)探究:某數(shù)學(xué)實(shí)驗(yàn)小組發(fā)現(xiàn):若圖1AH≠BF,點(diǎn)GCD上移動(dòng)時(shí),上述結(jié)論會(huì)發(fā)生變化,分別過(guò)點(diǎn)E、GBC邊的平行線,再分別過(guò)點(diǎn)F、HAB邊的平行線,四條平行線分別相交于點(diǎn)A1、B1、C1、D1,得到矩形A1B1C1D1

如圖2,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)C靠近(DG>AE),經(jīng)過(guò)探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+

如圖3,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)D靠近(DG<AE),請(qǐng)?zhí)剿?/span>S四邊形EFGH、S矩形ABCD之間的數(shù)量關(guān)系,并說(shuō)明理由.

遷移應(yīng)用:

請(qǐng)直接應(yīng)用實(shí)驗(yàn)探究中發(fā)現(xiàn)的結(jié)論解答下列問(wèn)題:

如圖4,點(diǎn)E、F、G、H分別是面積為25的正方形ABCD各邊上的點(diǎn),已知AH>BF,AE>DG,S四邊形EFGH=11,HF=,求EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案