【題目】(1)如圖所示是一條線段,AB的長為10厘米,MN的長為2厘米,假設(shè)可以隨意在這條線段上取一點(diǎn),求這個(gè)點(diǎn)取在線段MN上的概率.
(2)如圖是一個(gè)木制圓盤,圖中兩同心圓,其中大圓直徑為20cm,小圓的直徑為10cm,一只小鳥自由自在地在空中飛行,求小鳥停在小圓內(nèi)(陰影部分)的概率是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標(biāo)系,格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))的坐標(biāo)分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).
(1)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△DEF,畫出△DEF;
(2)以O為位似中心,將△ABC放大為原來的2倍,在網(wǎng)格內(nèi)畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點(diǎn),這次變換后的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(2,2),直線AB為⊙O的切線,B為切點(diǎn).則B點(diǎn)的坐標(biāo)為( 。
A. (﹣,) B. (﹣,1) C. (﹣,) D. (﹣1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,BP與⊙O相交于點(diǎn)D,C為⊙O上的一點(diǎn),分別連接CB、CD,∠BCD=60°.
(1)求∠ABD的度數(shù);
(2)若AB=6,求PD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)(1,n),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②﹣1≤a≤﹣;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸交于點(diǎn)O、A,把拋物線在x軸及其上方的部分記為C1,將C1以y鈾為對(duì)稱軸作軸對(duì)稱得到C2,C2與x軸交于點(diǎn)B,若直線y=x+m與C1,C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1,且過點(diǎn)(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有錯(cuò)誤的結(jié)論有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com