【題目】(11·貴港)若記yf(x),其中f(1)表示當(dāng)x1時(shí)y的值,即f(1)

;f()表示當(dāng)x時(shí)y的值,即f();;則f(1)f(2)f()f(3)

f()f(2011)f()_ ▲

【答案】2011

【解析】此題需先根據(jù)y=fx=,計(jì)算出f)的值,發(fā)現(xiàn)fx+f=1,再根據(jù)此規(guī)律,即可得出結(jié)果.

解:y=fx=,

f=

=,

fx+f=1,

f1+f2+f+f3+f+…+f2011+f

=f1+[f2+f]+[f3+f]+…+[f2011+f]

=+1+1+…+1

=+2011

=2011

故答案為:2011

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,線段A1B1是由線段AB平移得到的,已知AB兩點(diǎn)的坐標(biāo)分別為(-2,3),(3,1).若點(diǎn)B1的坐標(biāo)為(1,1),則點(diǎn)A1的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末小玲做作業(yè)時(shí),解方程的步驟如下:

①去分母,得3(x1)2(23x)1;

②去括號(hào),得3x346x1;

③移項(xiàng),得3x6x134;

④合并同類項(xiàng),得-3x2;

⑤系數(shù)化為1,得x=-.

(1)聰明的你知道小玲的解答過(guò)程正確嗎?答: (”),如果不正確,第 (填序號(hào))出現(xiàn)了問(wèn)題;

(2)請(qǐng)你寫(xiě)出這道題正確的解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了打造森林城市,樹(shù)立城市新地標(biāo),實(shí)現(xiàn)綠色、共享發(fā)展理念,在城南建起了望月閣及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量望月閣的高度,來(lái)檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力.他們經(jīng)過(guò)觀察發(fā)現(xiàn),觀測(cè)點(diǎn)與望月閣底部間的距離不易測(cè)得,因此經(jīng)過(guò)研究需要兩次測(cè)量,于是他們首先用平面鏡進(jìn)行測(cè)量.方法如下:如圖,小芳在小亮和望月閣之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),小亮看著鏡面上的標(biāo)記,他來(lái)回走動(dòng),走到點(diǎn)D時(shí),看到望月閣頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測(cè)得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽(yáng)光下,他們用測(cè)影長(zhǎng)的方法進(jìn)行了第二次測(cè)量,方法如下:如圖,小亮從D點(diǎn)沿DM方向走了16米,到達(dá)望月閣影子的末端F點(diǎn)處,此時(shí),測(cè)得小亮身高FG的影長(zhǎng)FH=2.5米,FG=1.65米.

如圖,已知ABBM,EDBM,GFBM,其中,測(cè)量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出望月閣的高AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】絕對(duì)值小于5的所有整數(shù)之積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖AB∥CE,BE平分∠ABC,CP平分∠BCE交BE于點(diǎn)P.

(1)求證:△BCP是直角三角形;

(2)若BC=5,S△BCP=6,求AB與CE之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程(m﹣2)x|m|+3mx+1=0是關(guān)于x的一元二次方程,則(
A.m=±2
B.m=2
C.m=﹣2
D.m≠±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABC=ADC=90°,對(duì)角線AC、BD交于點(diǎn)P,且AB=BD,AP=4PC=4,則cosACB的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某長(zhǎng)方形廣場(chǎng)的四個(gè)角都有一個(gè)半徑相同的四分之一圓形的草地,若圓形的半徑為x米,長(zhǎng)方形長(zhǎng)為a米,寬為b

1分別用代數(shù)式表示草地和空地的面積;

2若長(zhǎng)方形長(zhǎng)為300米,寬為200米,圓形的半徑為10米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留到整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案