【題目】如圖,⊙O內(nèi)切于RtABC,點(diǎn)P、點(diǎn)Q分別在直角邊BC、斜邊AB上,PQAB,且PQ與⊙O相切,若AC2PQ,則tanB的值為( 。

A. B. C. D.

【答案】C

【解析】

設(shè)⊙O的半徑是R,PE=PF=x,BQ=y,連接ODOG,OFOE,得出正方形CDOEOGQF,推出OD=CD=CE=OE=GQ=QF=R,求出y=2R,x=R,根據(jù)銳角三角函數(shù)值求出即可.

解:


設(shè)⊙O的半徑是RPE=PF=x,BQ=y,
連接OD,OG,OF,OE,
∵⊙O內(nèi)切于RtABC
∴∠ODC=OEC=90°=C,AD=AG,
OD=OE,
∴四邊形CDOE是正方形,
OD=CD=CE=OE=R,
同理OG=GQ=FQ=OF=R,
PQ=CPAC=AQ,
PQAB,∠C=90°
∴∠C=PQB=90°,
∵∠B=B
∴△BQP∽△BCA,

根據(jù)BG=BE得:y+R=2y-R
解得:y=2R,
RtPQB中,由勾股定理得:PQ2+BQ2=BP2
即(2R2+R+x2=4R-R-x2,

解得:,

PQ=,BQ=2R.

tanB=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c與直線y=﹣x+m相交于第一象限內(nèi)不同的兩點(diǎn)A(4,n),B(1,4),

(1)求此拋物線的解析式.

(2)拋物線上是否存點(diǎn)P,使直線OP將線段AB平分?若存在直接求出P點(diǎn)坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)G.

①求證:BD⊥CF;

②當(dāng)AB=4,AD=時(shí),求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB O 的直徑,C O 上一點(diǎn),ADCE 于點(diǎn) D,AC 平分DAB

1 求證:直線 CE O 的切線;

2 AB10,CD4,求 BC 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水庫大壩截面的迎水坡坡比(DEAE的長(zhǎng)度之比)為10.6,背水坡坡比為12,大壩高DE=30米,壩頂寬CD=10米,求大壩的截面的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某幼兒園為了加強(qiáng)安全管理,決定將園內(nèi)的滑滑板的傾斜角由45°降為30°,已知原滑滑板AB的長(zhǎng)為5米,點(diǎn)D、B、C在同一水平地面上.若滑滑板的正前方能有3米長(zhǎng)的空地就能保證安全,原滑滑板的前方有6米長(zhǎng)的空地,像這樣改造是否可行?請(qǐng)說明理由.(參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線交于點(diǎn)O0,0),。點(diǎn)B是拋物線上O,A之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)B分別作x軸、y軸的平行線與直線OA交于點(diǎn)CE。

1)求拋物線的函數(shù)解析式;

2)若點(diǎn)COA的中點(diǎn),求BC的長(zhǎng);

3)以BCBE為邊構(gòu)造條形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),求m,n之間的關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A、B兩點(diǎn).

1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.

2)求△AOB的面積.

3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點(diǎn)在圓上,兩邊與圓相交,同弧所對(duì)的圓周角相等,小明在課后繼續(xù)對(duì)圓外角和圓內(nèi)角進(jìn)行了探究.

下面是他的探究過程,請(qǐng)補(bǔ)充完整:

定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對(duì)的一個(gè)圓外角.

(1)請(qǐng)?jiān)趫D2中畫出所對(duì)的一個(gè)圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測(cè)量,獲得了兩個(gè)猜想:一條弧所對(duì)的圓外角______這條弧所對(duì)的圓周角;一條弧所對(duì)的圓內(nèi)角______這條弧所對(duì)的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;

問題解決

經(jīng)過證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3,F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請(qǐng)簡(jiǎn)述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

同步練習(xí)冊(cè)答案