【題目】已知拋物線y=﹣x2+bx+c與直線y=﹣x+m相交于第一象限內(nèi)不同的兩點(diǎn)A(4,n),B(1,4),

(1)求此拋物線的解析式.

(2)拋物線上是否存點(diǎn)P,使直線OP將線段AB平分?若存在直接求出P點(diǎn)坐標(biāo);若不存在說明理由.

【答案】(1)y=-x2+4x+1(2)存在點(diǎn)P1,),P2,

【解析】

(1)根據(jù)待定系數(shù)法求出m、n的值,然后根據(jù)待定系數(shù)法求出二次函數(shù)的解析式;

(2)根據(jù)平分線段AB求出AB的中點(diǎn)M,然后求出OM的解析式,構(gòu)造方程組求解即可.

(1)∵點(diǎn)B(1,4)在y=-x+m

∴4=-1+m

解得m=5

∴y=-x+5

∵A(4,n)在直線y=-x+5

∴n=-4+5=1

即A為(4,1)

解得

∴拋物線的解析式為:y=-x2+4x+1

(2)存在

由(1)知:AB的中點(diǎn)M為(,

∴直線OM為y=x

因此可得

解得

即存在點(diǎn)P1,),P2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點(diǎn)B作⊙O的切線BM,點(diǎn)AC,D分別為⊙O的三等分點(diǎn),連接AC,AD,DC,延長ADBM于點(diǎn)ECDAB于點(diǎn)F

(1)求證:CDBM;

(2)連接OE,若DEm,求OBE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一張簡易活動餐桌,測得OA=OB=30cm,OC=OD=50cm,現(xiàn)要求桌面離地面的高度為40cm,那么兩條桌腳的張角∠COD的度數(shù)大小應(yīng)為( )

A. 100° B. 120° C. 135° D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2x

(1)在平面直角坐標(biāo)系內(nèi),畫出該二次函數(shù)的圖象;

(2)根據(jù)圖象寫出:當(dāng)x   時,y>0;

當(dāng)0<x<4時,y的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓上有A、B、C三點(diǎn),直線l與圓相切于點(diǎn)A,CD平分∠ACB,且與l交于點(diǎn)D,若=80°,=60°,則∠ADC的度數(shù)為( 。

A. 80° B. 85° C. 90° D. 95°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在x軸的正半軸上依次截取OA1A1A2A2A3A3A4A4A5,過點(diǎn)A1、A2A3、A4、A5分別作x軸的垂線與反比例函數(shù)yx≠0)的圖象相交于點(diǎn)P1、P2、P3、P4、P5,得直角三角形OP1A1A1P2A2,A2P3A3,A3P4A4A4P5A5,并設(shè)其面積分別為S1、S2、S3、S4、S5,則S10_____.(n≥1的整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BCCD上,∠EAF=45°試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點(diǎn)EF分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時,仍有EF=BE+FD請證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)EF,且AEAD,DF=401米,現(xiàn)要在EF之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41 =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:二次函數(shù)yx2+bx+c的圖象與x軸交于AB兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上,

(1)求拋物線的表達(dá)式;

(2)拋物線的對稱軸上有一動點(diǎn)P,求出PA+PD的最小值;

(3)若拋物線上有一動點(diǎn)M(點(diǎn)C除外),使△ABM的面積等于△ABC的面積,求M點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O內(nèi)切于RtABC,點(diǎn)P、點(diǎn)Q分別在直角邊BC、斜邊AB上,PQAB,且PQ與⊙O相切,若AC2PQ,則tanB的值為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案