【題目】在互聯(lián)網(wǎng)技術(shù)的影響下,幸福新村的村民小劉在網(wǎng)上銷售蘋果,原計(jì)劃每天賣100千克,但實(shí)際每天的銷量與計(jì)劃銷量相比有出入,如表是某周的銷售情況(超額記為正,不足記為負(fù).單位:千克):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計(jì)劃量的差值 |
(1)根據(jù)表中的數(shù)據(jù)可知前三天共賣出___________千克;
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售多少千克?
(3)若每千克按5元出售,每千克蘋果的運(yùn)費(fèi)為1元,那么小劉本周一共收入多少元?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點(diǎn)作CE⊥BD交BD于E點(diǎn),H為BC中點(diǎn),連接AH交BD于G點(diǎn),交EC的延長線于F點(diǎn),下列5個(gè)結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE;⑤CF=BD.正確的有( 。﹤(gè).
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說,到某個(gè)定點(diǎn)等于定長的所有點(diǎn)在同一個(gè)圓上.圓心在P(a,b),半徑為r的圓的方程可以寫為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心, 為半徑的圓的方程為:________;
(2)根據(jù)以上材料解決以下問題:
如圖2,以B(-6,0)為圓心的圓與y軸相切于原點(diǎn),C是☉B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長BD交y軸于點(diǎn)E,已知sin∠AOC=.
①連接EC,證明EC是☉B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO,若存在,求P點(diǎn)坐標(biāo),并寫出以P為圓心,以PB為半徑的☉P的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩個(gè)蔬菜市場各有蔬菜14噸,現(xiàn)要全部運(yùn)往甲、乙兩地,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從蔬菜市場A到甲地運(yùn)費(fèi)50元/噸,到乙地30元/噸;從蔬菜市場B到甲地運(yùn)費(fèi)60元/噸,到乙地45元/噸。
(1)設(shè)從蔬菜市場A向甲地運(yùn)送蔬菜x噸,請完成下表:
運(yùn)往甲地(單位:噸) | 運(yùn)往乙地(單位:噸) | |
蔬菜市場A | x | |
蔬菜市場B |
(2)若總運(yùn)費(fèi)為1300元,則從蔬菜市場A向甲地運(yùn)送蔬菜多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:點(diǎn)D是線段BC的中點(diǎn);
(2)如圖2,若AB=AC=13,AF=BD=5,求四邊形AFBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項(xiàng)式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多項(xiàng)式的值與字母x的取值無關(guān),求a、b的值.
(2)在(1)的條件下,先化簡多項(xiàng)式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+a2)+…+(9b+a2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有依次3個(gè)數(shù):2、9、7.對任意相鄰的兩個(gè)數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個(gè)數(shù)之間,可產(chǎn)生一個(gè)新數(shù)串:2、7、9、-2、7,這稱為第1次操作,做第2次同樣的操作后也可以產(chǎn)生一個(gè)新數(shù)串:2、5、7、2、9、-11、-2、9、7,繼續(xù)依次操作下去,問從數(shù)串2、9、7開始操作第20次后所產(chǎn)生的那個(gè)數(shù)串的所有數(shù)之和是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣+bx+c過點(diǎn)A(3,0),B(0,2).M(m,0)為線段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過點(diǎn)M作垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N.
(1)求直線AB的解析式和拋物線的解析式;
(2)如果點(diǎn)P是MN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);
(3)如果以B,P,N為頂點(diǎn)的三角形與△APM相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)學(xué)習(xí)過反比例函數(shù)y=的圖像和性質(zhì),請你回顧研究它的過程,運(yùn)用所學(xué)知識(shí)對函數(shù)y=的圖像和性質(zhì)進(jìn)行探索,并解決下列問題:
(1)該函數(shù)的圖像大致是( )
(2)寫出該函數(shù)兩條不同類型的性質(zhì):
① ;
② .
(3)寫出不等式-3>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com