【題目】如圖,直線與反比例函數(shù)的圖象交于點軸交于點平行于軸的直線交反比例函數(shù)的圖象于點交線段于點連接

1)求的值和反比例函數(shù)的表達(dá)式;

2)當(dāng)點是線段的中點時,求點的坐標(biāo);

3)直線沿軸方向平移,當(dāng)為何值時,的面積最大?

【答案】1m=8;(2;(3時,的面積最大.

【解析】

1)求出點A的坐標(biāo),利用待定系數(shù)法即可解決問題;

2)求出直線與x軸交點B的坐標(biāo),然后利用中點公式求解;

3)根據(jù)三角形面積公式構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.

解:(1 直線經(jīng)過點,

反比例函數(shù)經(jīng)過點

反比例函數(shù)的解析式為;

2)當(dāng)時,代入

則有:解得:

的坐標(biāo)為

A,B的中點,

3)由題意,點M,N的坐標(biāo)為

時,的面積最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,函數(shù)(x>0)的圖象與直線l1:交于點A,與直線l2x=k交于點B.直線l1l2交于點C

(1) 當(dāng)點A的橫坐標(biāo)為1時,則此時k的值為 _______;

(2) 橫、縱坐標(biāo)都是整數(shù)的點叫做整點 記函數(shù)(x>0) 的圖像在點A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)W

①當(dāng)k=3時,結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點個數(shù)是_________;

②若區(qū)域W內(nèi)恰有1個整點,結(jié)合函數(shù)圖象,直接寫出k的取值范圍:___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ADBC,ABAC,E是邊BC上的點,且∠AED=∠CAD,DEAC于點F

1)求證:ABE∽△DAF;

2)當(dāng)ACFCAEEC時,求證:ADBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標(biāo)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形 ABCD 中, P AB 的中點,的延長線于點 E ,連接 AE BE , DP 于點 F ,連接 BF 、FC 下列結(jié)論:① ;② FB AB ;③ ;④ FC EF . 其中正確的是(

A.①②④B.①③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段OA=2,OP=1,將線段OP繞點O任意旋轉(zhuǎn)時,線段AP的長度也隨之改變,則下列結(jié)論:

AP的最小值是1,最大值是4;

當(dāng)AP=2時,△APO是等腰三角形;

當(dāng)AP=1時,△APO是等腰三角形;

當(dāng)AP時,△APO是直角三角形;

當(dāng)AP時,△APO是直角三角形.

其中正確的是(  )

A. ①④⑤ B. ②③⑤ C. ②④⑤ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為初三學(xué)生定制校服,對部分學(xué)生的服裝型號做了調(diào)查,結(jié)果如下:

型號

140

150

160

170

180

男生

11

18

9

7

5

女生

9

12

18

7

4

下列說法正確的是(

A.男生服裝型號的眾數(shù)大于女生服裝型號的眾數(shù)

B.男生服裝型號的中位數(shù)等于女生服裝型號的中位數(shù)

C.男生服裝型號的眾數(shù)小于女生服裝型號的眾數(shù)

D.男生服裝型號的中位數(shù)大于女生服裝型號的中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,∠ABC45°,ABAC,點E,F分別CD、AC邊上的點,且AFCE,BF的延長線交AE于點G

1)若DE2,AD8,求AE

2)若GAE的中點,連接CG,求證:AE+CGBG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

(3)當(dāng)這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案