(2010•來賓)已知在Rt△ABC中,∠C=90°,點E在邊AB上,且AE=AC,∠BAC的平分線AD與BC交于點D.
(1)根據(jù)上述條件,用尺規(guī)在圖中作出點E和∠BAC的平分線AD(不要求寫出作法,但要保留作圖痕跡);
(2)證明:DE⊥AB.
分析:(1)以A為圓心,AC長為半徑畫弧,交AB于點E,再根據(jù)角平分線的畫法作出∠BAC的平分線AD即可,注意AD是線段,不要畫成射線;
(2)首先證明△ACD≌△AED,根據(jù)全等三角形的性質(zhì)可得∠AED=∠C=90°,再根據(jù)垂直定義可得答案.
解答:解:(1)如圖所示:

(2)∵AD平分∠BAC,
∴∠EAD=∠CAD,
在△ACD和△AED中,
AE=AC
∠EAD=∠CAD
AD=AD

∴△ACD≌△AED(SAS),
∴∠AED=∠C=90°,
∴DE⊥AB.
點評:此題主要考查了基本作圖,以及全等三角形的判定與性質(zhì),關(guān)鍵是正確畫出圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•來賓)已知|x|=2,則x=
±2
±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•來賓)已知⊙O1與⊙O2相切,⊙O1的半徑為4,圓心距為10,則⊙O2的半徑是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•來賓)已知反比例函數(shù)的圖象過點(-2,-2).
(1)求此反比例函數(shù)的關(guān)系式;
(2)過點M(4,4)分別作x、y軸的垂線,垂足分別為A、B,這兩條垂線與x、y軸圍成一個正方形OAMB(如圖),用列表法寫出在這個正方形內(nèi)(包括正方形的邊和內(nèi)部)且位于第一象限,橫、縱坐標(biāo)都是整數(shù)的點的坐標(biāo);并求在這些點中任取一點,該點恰好在所求反比例函數(shù)圖象上的概率P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•來賓)已知矩形OABC的頂點O在平面直角坐標(biāo)系的原點,邊OA、OC分別在x、y軸的正半軸上,且OA=3cm,OC=4cm,點M從點A出發(fā)沿AB向終點B運動,點N從點C出發(fā)沿CA向終點A運動,點M、N同時出發(fā),且運動的速度均為1cm/秒,當(dāng)其中一個點到達終點時,另一點即停止運動.設(shè)運動的時間為t秒.
(1)試用t表示點N的坐標(biāo),并指出t的取值范圍;
(2)試求出多邊形OAMN的面積S與t的函數(shù)關(guān)系式;
(3)是否存在某個時刻t,使得點O、N、M三點同在一條直線上?若存在,則求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案