【題目】如圖,矩形紙片ABCD中,G、F分別為AD、BC的中點,將紙片折疊,使D點落在GF上,得到△HAE , 再過H點折疊紙片,使B點落在直線AB上,折痕為PQ.連接AF、EF , 已知HEHF.下列結(jié)論:①△MEH為等邊三角形;②AEEF;③△PHE∽△HAE;④ ,

其中正確的結(jié)論是
A.①②③
B.①②④
C.①③④
D.①②③④

【答案】D
【解析】解:①由折疊易得AH=AD,∠DAE=HAE,
∠AHE=∠D=90°,PQ=BC=AD,PQ⊥AB,
因為G,F分別為AD、BC的中點,
所以H也是PQ的中點,
則在Rt△AHQ中,AH=2HQ,則∠HAQ=30°,
所以∠DAE=HAE=∠HAQ=30°,
則∠AEH=60°,∠AHM=∠HAQ=30°,
所以∠EMH=∠AEH=60°,
則△MEH為等邊三角形,故①正確;
②由①得MH=EH=HF,則△MEF為直角三角形,即AEEF , 故②正確;
③在Rt△AHE中,=sin30°=,
同理,在Rt△AHQ中,=sin30°=
==,
又∠AHE=∠HPE=90°,
∴△PHE∽△HAE , 故③正確;
④設(shè)AD=x,則AH=x,BQ=HF=HE=x,AQ=AH=x,
則AB=AQ+BQ=x,
所以==,
故④正確.
故選 D.
【考點精析】本題主要考查了矩形的性質(zhì)的相關(guān)知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
如圖,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1

(1)證明:AB2=AA1AC;
(2)探究:△ABC是否為黃金等腰三角形?請說明理由;(提示:此處不妨設(shè)AC=1)
(3)應(yīng)用:已知AC=a,作A1B1∥AB交BC于B1 , B1A2平分∠A1B1C交AC于A2 , 作A2B2∥AB交B2 , B2A3平分∠A2B2C交AC于A3 , 作A3B3∥AB交BC于B3 , …,依此規(guī)律操作下去,用含a,n的代數(shù)式表示An﹣1An . (n為大于1的整數(shù),直接回答,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,直線y=﹣2x﹣1與y軸交于點A,與直線y=﹣x交于點B,點B關(guān)于原點的對稱點為點C.
(Ⅰ)求過B,C兩點的拋物線y=ax2+bx﹣1解析式;
(Ⅱ)P為拋物線上一點,它關(guān)于原點的對稱點為Q.
①當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo);
②若點P的橫坐標(biāo)為t(﹣1<t<1),當(dāng)t為何值時,四邊形PBQC面積最大?最大值是多少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年11月3日,我國第一枚大型運載火箭“長征5號”在海南文昌航天發(fā)射場順利升空,這標(biāo)志著我國從航天大國邁向航天強國.如圖,火箭從地面L處發(fā)射,當(dāng)火箭到達(dá)A點時,從位于地面R處雷達(dá)站測得AR的距離是6km,仰角為42.4°;1秒后火箭到達(dá)B點,此時測得仰角為45.5°.

(1)求發(fā)射臺與雷達(dá)站之間的距離LR;
(2)求這枚火箭從A到B的平均速度是多少?(結(jié)果精確到0.01,參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)印刷不清楚.

(1)他把猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).通過計算說明原題中是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線y=kx+bx軸交于點A(6,0),與y軸交于點B,與直線y=2x交于點C(a,4).

(1)求點C的坐標(biāo)及直線AB的表達(dá)式;

(2)如圖2,在(1)的條件下,過點E作直線lx軸于點E,交直線y=2x于點F,交直線y=kx+b于點G,若點E的坐標(biāo)是(4,0).

①求CGF的面積;

②直線l上是否存在點P,使OP+BP的值最?若存在,直接寫出點P的坐標(biāo);若不存在,說明理由;

(3)若(2)中的點Ex軸上的一個動點,點E的橫坐標(biāo)為m(m>0),當(dāng)點Ex軸上運動時,探究下列問題:

當(dāng)m取何值時,直線l上存在點Q,使得以A,C,Q為頂點的三角形與AOC全等?請直接寫出相應(yīng)的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下: 甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列問題:
(1)甲成績的平均數(shù)是 , 乙成績的平均數(shù)是;
(2)經(jīng)計算知S2=6,S2=42.你認(rèn)為選拔誰參加比賽更合適,說明理由;
(3)如果從甲、乙兩人5次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于80分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD= ,CE平分∠BCD,交邊AD于點E,聯(lián)結(jié)BE并延長,交CD的延長線于點P.
(1)求梯形ABCD的周長;
(2)求PE的長.

查看答案和解析>>

同步練習(xí)冊答案