【題目】定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
如圖,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1 .
(1)證明:AB2=AA1AC;
(2)探究:△ABC是否為黃金等腰三角形?請說明理由;(提示:此處不妨設(shè)AC=1)
(3)應(yīng)用:已知AC=a,作A1B1∥AB交BC于B1 , B1A2平分∠A1B1C交AC于A2 , 作A2B2∥AB交B2 , B2A3平分∠A2B2C交AC于A3 , 作A3B3∥AB交BC于B3 , …,依此規(guī)律操作下去,用含a,n的代數(shù)式表示An﹣1An . (n為大于1的整數(shù),直接回答,不必說明理由)
【答案】
(1)
證明:∵AC=BC,∠C=36°,
∴∠A=∠ABC=72°,
∵BA1平分∠ABC,
∴∠ABA1=∠ABC=36°,
∴∠C=∠ABA1,
又∵∠A=∠A,
∴△ABC∽△AA1B,
∴=,即AB2=AA1AC;
(2)
解:△ABC是黃金等腰三角形,
理由:由(1)知,AB2=ACAA1,
設(shè)AC=1,
∴AB2=AA1,
又由(1)可得:AB=A1B,
∵∠A1BC=∠C=36°,
∴A1B=A1C,
∴AB=A1C,
∴AA1=AC﹣A1C=AC﹣AB=1﹣AB,
∴AB2=1﹣AB,
設(shè)AB=x,即x2=1﹣x,
∴x2+x﹣1=0,
解得:x1=,x2=(不合題意舍去),
∴AB=,
又∵AC=1,
∴=,
∴△ABC是黃金等腰三角形;
(3)
解:由(2)得;當AC=a,則AA1=AC﹣A1C=AC﹣AB=a﹣AB=a﹣a=a,
同理可得:A1A2=A1C﹣A1B1=AC﹣AA1﹣A1B1
=a﹣a﹣A1C
=a﹣a﹣[a﹣a]
=a.
故An﹣1An=a.
【解析】
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加中考體育測試,甲、乙、丙三位同學(xué)進行足球傳球訓(xùn)練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳給其余兩人的機會是均等的,由甲開始傳球,共傳球三次.
(1)請利用樹狀圖列舉出三次傳球的所有可能情況;
(2)求三次傳球后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(2,n),B(m,n)(m>2),D(p,q)(q<n),點B,D在直線y=x+1上.四邊形ABCD的對角線AC,BD相交于點E,且AB∥CD,CD=4,BE=DE,△AEB的面積是2.
求證:四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,M,N分別是邊AB,BC的中點,MP⊥AB交邊CD于點P,連接NM,NP.
(1)若∠B=60°,這時點P與點C重合,則∠NMP= 度
(2)求證:NM=NP
(3)當△NPC為等腰三角形時,求∠B的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=18米,于點A,MA=6米,射線于點B,P點從B點出發(fā)向A運動,每秒走1米,Q點從B點向D點運動,每秒走2米,P,Q同時從B出發(fā),則出發(fā)x秒后,在線段MA上有一點C,使△CAP與△PBQ全等,則x的值為( )
A. 4 B. 6 C. 4或9 D. 6或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖特有的魅力曾使無數(shù)人沉湎其中,連當年叱咤風云的拿破侖也不例外,我們可以只用圓規(guī)將圓等分.例如可將圓6等分,如圖只需在⊙O上任取點A,從點A開始,以⊙O的半徑為半徑,在⊙O上依次截取點B,C,D,E,F(xiàn).從而點A,B,C,D,E,F(xiàn)把⊙O六等分.下列可以只用圓規(guī)等分的是( ) ①兩等分 ②三等分 ③四等分 ④五等分.
A.②
B.①②
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習了三角形全等的判定方法和直角三角形全等的判定方法后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情況進行研究.
(初步思考)我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,,然后,對進行分類,可分為“是直角,鈍角,銳角”三種情況進行探索.
(深入探究)(1)當是直角時,如圖①,在△ABC和△DEF中,AC=DF,BC=EF,,根據(jù) 可以知道.
(2)當是鈍角時,如圖②,在△ABC和△DEF中,AC=DF,BC=EF,,且都是鈍角,求證:.
(3)當是銳角時,在△ABC和△DEF中,AC=DF,BC=EF,,且都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等(不寫做法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD繞點B逆時針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為 ,則HD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,G、F分別為AD、BC的中點,將紙片折疊,使D點落在GF上,得到△HAE , 再過H點折疊紙片,使B點落在直線AB上,折痕為PQ.連接AF、EF , 已知HE=HF.下列結(jié)論:①△MEH為等邊三角形;②AE⊥EF;③△PHE∽△HAE;④ ,
其中正確的結(jié)論是
A.①②③
B.①②④
C.①③④
D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com