如圖,在△ABC中,∠CAB=70º,將△ABC繞點A逆時針旋轉(zhuǎn)到△ADE的位置,連接EC,滿足EC∥AB, 則∠BAD的度數(shù)為 
A.30°B.35° C.40°D.50°
C
試題分析:因為△ADE是由△ABC繞點A逆時針旋轉(zhuǎn)得到的,所以△ADE≌△ABC,所以∠CAB=∠EAD=70º,AE=AC,因為EC∥AB,所以∠CAB=∠ECA=70°,所以∠AEC=70°,所以∠EAC=180°-70°×2=40°,所以∠CAD=∠EAD-∠EAC=70º-40°=30°,所以∠BAD=∠CAB-∠CAD=70º-30°=40°.
本題涉及了全等三角形的性質(zhì),該題是常考題,主要考查學生對圖形旋轉(zhuǎn)的意義,以及對全等三角形性質(zhì)和角的等量代換的應用。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題


【問題提出】
學習了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應相等”的情形進行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角”三種情況進行探究.

【深入探究】
第一種情況:當∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)       ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若       ,則△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B順時針旋轉(zhuǎn)得到△BCD,若點B的坐標為(2,0),則點C的坐標為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一副三角板如圖疊放在一起,則圖中∠α的度數(shù)為( 。
A.75°B.60°C.65°D.55°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

平行四邊形的兩條對角線長分別為8和10,則其中每一邊長的取值范圍是           。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,已知點A(-,0),B(,0),點C在x軸上,且AC+BC=6,寫出滿足條件的所有點C的坐標                  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=,DC=12,AD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖:架在消防車上的云梯AB的坡比為,云梯AB的長為m,云梯底部離地面1.5m(即BC=1.5m).求云梯頂端離地面的距離AE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在Rt△ABC中,已知∠C=90º,∠A=30º,BD是∠B的平分線,AC=18,則BD的值為(    )  
A.B.9C.12D.6

查看答案和解析>>

同步練習冊答案