【題目】為了大力弘揚和踐行社會主義核心價值觀,某鄉(xiāng)鎮(zhèn)在一條公路旁的小山坡上,樹立一塊大型標語牌AB,如圖所示,標語牌底部B點到山腳C點的距離BC為20米,山坡的坡角為30°. 某同學在山腳的平地F處測量該標語牌的高,測得點C到測角儀EF的水平距離CF = 1.7米,同時測得標語牌頂部A點的仰角為45°,底部B點的仰角為20°,求標語牌AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,

【答案】標語牌AB的高度約為12.16

【解析】分析:解直角三角形求處CD的長度,則 然后在直角中即可求得的長,RtAGE中,求得的長,從而求得的高度..

詳解:RtBDC中, BC = 20米,

RtBGE中,

RtAGE,

答:標語牌AB的高度約為12.16

點睛:考查解直角三角形的應用,結合圖形利用三角函數(shù)解三角形即可.

型】解答
束】
20

【題目】已知ABO直徑,ACO的切線,BCO于點D(如圖1).

(1)若AB=2,∠B=30°,求CD的長;

(2) 取AC的中點E,連結D、E(如圖2),求證:DEO相切.

【答案】(1);(2)見解析

【解析】分析:連接AD ,根據AC是⊙O的切線,AB是⊙O的直徑,得到∠CAB=ADB=90°,根據∠B=30°,解直角三角形求得的長度.

連接OD,AD.根據DE=CE=EA,EDA=EAD. 根據OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

詳解:(1)如圖,連接AD ,

AC是⊙O的切線,AB是⊙O的直徑,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如圖,連接ODAD.

AC是⊙O的切線,AB是⊙O的直徑,

∴∠CAB=ADB=ADC=90°,

又∵EAC中點,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA,

∴∠ODA=DAO,

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又點D在⊙O上,因此DE與⊙O相切.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點,BCx軸,交y軸于點C,動點P從坐標原點O出發(fā),沿OABC(圖中“→”所示路線)勻速運動,終點為C,過P作PMx軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關于x的函數(shù)圖象大致為(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課外活動時間,甲、乙、丙、丁4名同學相約進行羽毛球比賽.

(1)如果將4名同學隨機分成兩組進行對打,求恰好選中甲乙兩人對打的概率;

(2)如果確定由丁擔任裁判,用“手心、手背”的方法在另三人中競選兩人進行比賽.競選規(guī)則是:三人同時伸出“手心”或“手背”中的一種手勢,如果恰好只有兩人伸出的手勢相同,那么這兩人上場,否則重新競選.這三人伸出“手心”或“手背”都是隨機的,求一次競選就能確定甲、乙進行比賽的概率.

【答案】(1);(2)

【解析】分析:列舉出將4名同學隨機分成兩組進行對打所有可能的結果,找出甲乙兩人對打的情況數(shù),根據概率公式計算即可.

畫樹狀圖寫出所有的情況,根據概率的求法計算概率.

詳解:(1)甲同學能和另一個同學對打的情況有三種:

(甲、乙),(甲、丙),(甲、。

則恰好選中甲乙兩人對打的概率為:

(2)樹狀圖如下:

一共有8種等可能的情況,其中能確定甲乙比賽的可能為(手心、手心、手背)、(手背、手背、手心)兩種情況,因此,一次競選就能確定甲、乙進行比賽的概率為.

點睛:考查概率的計算,明確概率的意義時解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的比.

型】解答
束】
22

【題目】為了“綠化環(huán)境,美化家園”,312日(植樹節(jié))上午8點,某校901、902班同學同時參加義務植樹.901班同學始終以同一速度種植樹苗,種植樹苗的棵數(shù)y1與種植時間x(小時)的函數(shù)圖象如圖所示;902班同學開始以1小時種植40棵的速度工作了1.5小時后,因需更換工具而停下休息半小時,更換工具后種植速度提高至原來的1.5倍.

(1)902班同學上午11點時種植的樹苗棵數(shù);

(2)分別求出901班種植數(shù)量y1、902班種植數(shù)量y2與種植時間x(小時)之間的函數(shù)關系式,并在所給坐標系上畫出y2關于x的函數(shù)圖象;

(3)已知購買樹苗不多于120棵時,每棵樹苗的價格是20元;購買樹苗超過120棵時,超過的部分每棵價格17元.若本次植樹所購樹苗的平均成本是18元,則兩班同學上午幾點可以共同完成本次植樹任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,小明按如下步驟作圖:

1)以點O為圓心,適當長為半徑畫弧,交OAD,交OB于點E

2)分別以點D、E為圓心,大于的長為半徑畫弧,兩弧在的內部相交于點C

3)畫射線OC

根據上述作圖步驟,下列結論正確的有( )個

①射線OC的平分線;②點O和點C關于直線DE對稱;③射線OC垂直平分線段DE;④.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018個正整數(shù)12,3,4,,2018按如圖方式排列成一個表.

1)用如圖方式框住表中任意4個數(shù),記左上角的一個數(shù)為,則另三個數(shù)用含的式子表示出來,從小到大依次是__________、___________、_______________(請直接填寫答案);

2)用(1)中方式被框住的4個數(shù)之和可能等于2019嗎?如果可能,請求出的值;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運貨15.5,5輛大貨車與6輛小貨車一次可以運貨35.

(1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?

(2)現(xiàn)在租用這兩種貨車共10,要求一次運輸貨物不低于30,則大貨車至少租幾輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,的位置如圖所示.點A,BC的坐標分別為,,根據下面要求完成解答.

1)作關于點C成中心對稱的

2)將向右平移4個單位,作出平移后的

3)在x軸上求作一點P,使的值最小,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣4x+4x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線y上;將正方形ABCD沿x軸負方向平移a個單位長度后,點C恰好落在雙曲線在第一象限的分支上,則a的值是_____

查看答案和解析>>

同步練習冊答案