【題目】定義:如果經(jīng)過三角形一個頂點的線段把這個三角形分成兩個小三角形,其中一個三角形是等腰三角形,另外一個三角形和原三角形的三個內(nèi)角分別相等,那么這條線段稱為原三角形的“和諧分割線”,例如:如圖1,等腰直角三角形斜邊上的中線就是一條“和諧分割線”.
(1)判斷(對的打“√”,錯的打“×”)
①等邊三角形存在“和諧分割線”( )
②如果三角形中有一個角是另一個角的兩倍,則這個三角形必存在“和諧分割線”( )
(2)如圖2,Rt△ABC,∠C=90°,∠B=30°,BC=6,請用尺規(guī)畫出“和諧分割線”,并計算“和諧分割線”的長度.
【答案】(1)①×,②√;(2)和諧分割線”的長度為4.
【解析】
(1)根據(jù)“和諧分割線”的定義即可判斷;
(2)如圖作∠CAB的平分線,只要證明線段AD是“和諧分割線”即可,并根據(jù)直角三角形30°角所對邊是斜邊的一半和CD+BD=BC=6,求出CD的長度即可.
(1)①因為過等邊三角形任意一頂點,分割的兩個三角形都有一個角小于60°,即不可能是等邊三角形,故等邊三角形不存在“和諧分割線”,不正確,是假命題;
②如果三角形中有一個角是另一個角的兩倍,
則這個三角形必存在“和諧分割線”,理由如下:
如圖,在△ABC中,∠ABC=2∠C,作∠ABC的平分線交AC于D.
∵BD平分∠ABC
∴∠ABD=∠DBC=,
∵∠ABC=2∠C
∴∠ABD=∠DBC=∠C,
∴BD=DC,△BDC為等腰三角形
∠ADB=∠DBC+∠C=2∠C=∠ABC.
故BD為△ABC的和諧分割線.
正確,是真命題,
故答案為:×,√;
(2)如圖2,作∠CAB的平分線AD,
∵∠C=90°,∠B=30°,
∴∠DAB=∠B=30°,
∴DA=DB,
∴△ADB是等腰三角形,且∠CAD=∠DAB=∠B,
∴∠ADC=∠B+∠BAD=∠CAD+∠BAD=∠BAC
∴線段AD是△ABC的“和諧分割線”,
設(shè)CD=x,則BD=6﹣x,
∵ ,
∴x=2,
即AD=BD=6﹣2=4;
即和諧分割線”的長度為4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,∠A=80°,BO、CO分別是∠ABC和∠ACB的角平分線,則∠BOC等于( )
A. 140° B. 120° C. 130° D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為的籬笆,一面利用墻(墻的最大可用長度為),圍成中間隔有一道籬笆(平行于)的矩形花圃.設(shè)花圃的一邊為.
則________(用含的代數(shù)式表示),矩形的面積________(用含的代數(shù)式表示);
如果要圍成面積為的花圃,的長是多少?
將中表示矩形的面積的代數(shù)式通過配方,問:當等于多少時,能夠使矩形花圃面積最大,最大的面積為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等邊中,點、分別在、上,,連、.
(1)求證:;
(2)如圖2,延長至點,使得,連,試判斷的形狀,并說明理由;
(3)在(2)的條件下,連,.若,則______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過點A(0,2).
(1)若點(﹣,0)也在該拋物線上,求a,b滿足的關(guān)系式;
(2)若該拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為心,OA為半徑的圓與拋物線的另兩個交點為B,C,且△ABC有一個內(nèi)角為60°.
①求拋物線的解析式;
②若點P與點O關(guān)于點A對稱,且O,M,N三點共線,求證:PA平分∠MPN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,湛河兩岸AB與EF平行,小亮同學假期在湛河邊A點處,測得對岸河邊C處視線與湛河岸的夾角∠CAB=37°,沿河岸前行140米到點B處,測得對岸C處的視線與湛河岸夾角∠CBA=45°.問湛河的寬度約多少米?(參考數(shù)據(jù):sin37°≈0.60,cos37°=0.80,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC的底邊BC=20cm,D是腰AB上一點,且CD=16cm,BD=12cm,
(1)求△ABC中BC邊上的高
(2)求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(11·西寧)西寧中心廣場有各種音樂噴泉,其中一個噴水管的最大高度為3米,此時距噴水管的水平距離為米,在如圖3所示的坐標系中,這個噴泉的函數(shù)關(guān)系式是
A. y=-(x-)x2+3 B. y=-3(x+)x2+3
C. y=-12(x-)x2+3 D. y=-12(x+)x2+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求(1)求直線AE的函數(shù)表達式;(2)求D點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com