【題目】如圖,湛河兩岸ABEF平行,小亮同學(xué)假期在湛河邊A點(diǎn)處測得對岸河邊C處視線與湛河岸的夾角∠CAB=37°,沿河岸前行140米到點(diǎn)B測得對岸C處的視線與湛河岸夾角∠CBA=45°.問湛河的寬度約多少米?(參考數(shù)據(jù)sin37°≈0.60,cos37°=0.80,tan37°=0.75)

【答案】湛河的寬度約60米

【解析】試題分析CCDAB于點(diǎn)D,設(shè)CD=x米.由∠CBD=45°,得到BD=CD=x

RtADC中,用tanCAD表示出AD .根據(jù)AB=AD+DB=140,列方程求解即可.

試題解析解:過CCDAB于點(diǎn)D,設(shè)CD=x米.

RtBDC中,∠CDB=90°,∠CBD=45°,∴BD=CD=x

RtADC中,∠ADC=90°,∠CAD=37°,∴AD=

AB=AD+DB=140,∴,∴x=60

答:湛河的寬度約60米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,BD平分∠ABC,CE平分∠ACB的鄰補(bǔ)角∠ACM,若∠BDC=130°,∠E=50°,則∠BAC的度數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一,為了增強(qiáng)居民的節(jié)水意識,某自來水公司對居民用水采取以戶為單位分段計(jì)費(fèi)辦法收費(fèi);即每月用水10噸以內(nèi)(包括10噸)的用戶,每噸水收費(fèi)a元,每月用水超過10噸的部分,按每噸b元(ba)收費(fèi),設(shè)一戶居民月用水x(噸),應(yīng)收水費(fèi)y(元),yx之間的函數(shù)關(guān)系如圖所示.

1)分段寫出yx的函數(shù)關(guān)系式.

2)某戶居民上月用水8噸,應(yīng)收水費(fèi)多少元?

3)已知居民甲上月比居民乙多用水4噸,兩家一共交水費(fèi)46元,求他們上月分別用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+與邊AB,BC分別相交于點(diǎn)M,N,函數(shù)y=(x>0)的圖象過點(diǎn)M.

(1)試說明點(diǎn)N也在函數(shù)y=(x>0)的圖象上;

(2)將直線MN沿y軸的負(fù)方向平移得到直線M′N′,當(dāng)直線M′N′與函數(shù)y(x>0)的圖象僅有一個(gè)交點(diǎn)時(shí),求直線M'N′的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解家長對學(xué)生在校帶手機(jī)現(xiàn)象的看法,某校九年級興趣小組隨機(jī)調(diào)查了該校學(xué)生家長若干名并對調(diào)查結(jié)果進(jìn)行整理,繪制如下不完整的統(tǒng)計(jì)圖

請根據(jù)以上信息,解答下列問題

(1)這次接受調(diào)查的家長總?cè)藬?shù)為________人;

(2)在扇形統(tǒng)計(jì)圖中,很贊同所對應(yīng)的扇形圓心角的度數(shù)

(3)若在這次接受調(diào)查的家長中,隨機(jī)抽出一名家長,恰好抽到無所謂的家長概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮早晨從家騎車到學(xué)校,先上坡后下坡,所行路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖所示,若返回時(shí)上坡、下坡的速度仍與去時(shí)上、下坡的速度分別相同,則小明從學(xué)校騎車回家用的時(shí)間是________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD和正方形AEFG連接DG,BE

(1)發(fā)現(xiàn)

當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2,線段DGBE之間的數(shù)量關(guān)系是____________。直線DG與直線BE之間的位置關(guān)系是____________

(2)探究

如圖3,若四邊形ABCD與四邊形AEFG都為矩形AD=2AB,AG=2AE,證明直線DG⊥BE

(3)應(yīng)用

(2)情況下,連結(jié)GE(點(diǎn)EAB上方),GEAB,AB=,AE=1,則線段DG是多少?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張兩邊分別平行的紙條折成如圖所示,EF為折痕,EDBF于點(diǎn)G,且∠EFB=48°,則下列結(jié)論: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°;④∠DGF=96°,其中正確的個(gè)數(shù)有( )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】油電混動(dòng)汽車是一種節(jié)油、環(huán)保的新技術(shù)汽車.它將行駛過程中部分原本被浪費(fèi)的能量回收儲存于內(nèi)置的蓄電池中.汽車在低速行駛時(shí),使用蓄電池帶動(dòng)電動(dòng)機(jī)驅(qū)動(dòng)汽車,節(jié)約燃油.某品牌油電混動(dòng)汽車與普通汽車的相關(guān)成本數(shù)據(jù)估算如下:

油電混動(dòng)汽車

普通汽車

購買價(jià)格(萬元)

1748

1598

每百公里燃油成本(元)

31

46

某人計(jì)劃購入一輛上述品牌的汽車.他估算了用車成本,在只考慮車價(jià)和燃油成本的情況下,發(fā)現(xiàn)選擇油電混動(dòng)汽車的成本不高于選擇普通汽車的成本.則他在估算時(shí),預(yù)計(jì)行駛的公里數(shù)至少為多少公里?

查看答案和解析>>

同步練習(xí)冊答案