【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,﹣3).

(1)求該拋物線所對應(yīng)的二次函數(shù)的表達(dá)式及頂點M的坐標(biāo);

(2)連結(jié)CB、CM,過點MMN⊥y軸于點N,求證:∠BCM=90°.

【答案】(1)y=x2﹣2x﹣3;M(1,﹣4)(2)90°

【解析】試題分析:(1)由拋物線與x軸交于點兩點,則可設(shè)拋物線解析式為.由與y軸交于點則代入易得解析式,頂點易知.

證明,為等腰直角三角形,即可求出

試題解析:(1)設(shè)該拋物線對應(yīng)的二次函數(shù)的表達(dá)式為

∵拋物線過點

3=a(0+1)(03),

a=1,

∴拋物線解析式為

M(1,4).

(2)

為等腰直角三角形,

軸于點N

也是等腰直角三角形,

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底部未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分周長和是_________(用代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃把一塊近似于直角三角形的廢地開發(fā)為生物園,如圖所示,∠ACB=90°,BC=60,∠A=36°.

(1)若入口處EAB邊上,且與A、B等距離CE的長精確到個位);

(2)D點在AB邊上計劃沿線段CD修一條水渠.已知水渠的造價為50/,水渠路線應(yīng)如何設(shè)計才能使造價最低求出最低造價

其中sin36°=0.5878,cos36°=0.8090,tan36°=0.7265)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點C,下面四個結(jié)論:①16a+4b+c<0;②P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③c=﹣3a;④△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當(dāng)點EAD邊上移動時,折痕的端點P、Q也隨之移動;

①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖順次連接等腰梯形四邊中點得到一個四邊形,再順次連接所得四邊形四邊的中點得到的圖形是( )

A. 等腰梯形B. 直角梯形C. 菱形D. 矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB、CD四個車站的位置如圖所示:

(1)A、D兩站的距離;

(2)C、D兩站的距離;

(3)比較A、C兩站的距離與B、D兩站的距離,哪兩站的距離更大?大多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:當(dāng)空氣污染指數(shù)達(dá)0—50時為1級,質(zhì)量為優(yōu);51—100時為2級,質(zhì)量為良;101—200時為3級,輕度污染;201—300時為4級,中度污染;300以上時為5級,重度污染.某城市隨機抽取了2015年某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:

(1) 本次調(diào)查共抽取了 天的空氣質(zhì)量檢測結(jié)果進(jìn)行統(tǒng)計;

(2) 補全條形統(tǒng)計圖;

(3) 扇形統(tǒng)計圖中3級空氣質(zhì)量所對應(yīng)的圓心角為 °;

(4) 如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動,根據(jù)目前的統(tǒng)計,請你估計2015年該城市有多少天不適宜開展戶外活動.(2015年共365)

查看答案和解析>>

同步練習(xí)冊答案