如圖,拋物線的對稱軸是直線x=2,頂點A的縱坐標為1,點B(4,0)在此拋物線上.

(1)求此拋物線的解析式;
(2)若此拋物線對稱軸與x軸交點為C,點D(x,y)為拋物線上一動點,過點D作直線y=2的垂線,垂足為E.
①用含y的代數(shù)式表示CD2,并猜想CD2與DE2之間的數(shù)量關系,請給出證明;
②在此拋物線上是否存在點D,使∠EDC=120°?如果存在,請直接寫出D點坐標;如果不存在,請說明理由.
(1)依題意,設拋物線的解析式為:y=a(x-2)2+1,代入B(4,0),得:
a(4-2)2+1=0,解得:a=-
1
4

∴拋物線的解析式:y=-
1
4
(x-2)2+1.

(2)①猜想:CD2=DE2;
證明:由D(x,y)、C(2,0)、E(x,2)知:
CD2=(x-2)2+y2,DE2=(y-2)2;
由(1)知:(x-2)2=-4(y-1)=-4y+4,代入CD2中,得:
CD2=y2-4y+4=(y-2)2=DE2
②由于∠EDC=120°>90°,所以點D必在x軸上方,且拋物線對稱軸左右兩側(cè)各有一個,以左側(cè)為例:
延長ED交x軸于F,則EF⊥x軸;
在Rt△CDF中,∠FDC=180°-120°=60°,∠DCF=30°,則:
CD=2DF、CF=
3
DF;
設DF=m,則:CF=
3
m、CD=DE=2m;
∵EF=ED+DF=2m+m=2,
∴m=
2
3
,DF=m=
2
3
,CF=
3
m=
2
3
3
,OF=OC-CF=2-
2
3
3
,
∴D(2-
2
3
3
,
2
3
);
同理,拋物線對稱軸右側(cè)有:D(2+
2
3
3
,
2
3
);
綜上,存在符合條件的D點,且坐標為(2-
2
3
3
,
2
3
)或(2+
2
3
3
,
2
3
).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(6,0),(6,8).動點M、N分別從O、B同時出發(fā),以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NP⊥BC,交AC于P,連接MP.已知動點運動了x秒.
(1)P點的坐標為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時x的值;
(3)請你探索:當x為何值時,△MPA是一個等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長線上,取B關于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為______.
(2)實踐運用
如圖3,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數(shù)為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.
(3)拓展遷移
如圖4,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應的函數(shù)關系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形的長是4cm,寬是3cm,如果將長和寬都增加xcm,那么面積增加ycm2
(1)求y與x的函數(shù)表達式;
(2)求當邊長增加多少時,面積增加8cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標;若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

設拋物線y=ax2+bx+c與x軸交于兩個不同的點A(-l,0)、B(4,0),與y軸交于點C(0,2).
(1)求拋物線的解析式:
(2)問拋物線上是否存在一點M,使得S△ABM=2S△ABC?若存在,求出點M的坐標;若不存在,請說明理由.
(3)已知點D(1,n)在拋物線上,過點A的直線y=-x-1交拋物線于另一點E.
①求tan∠ABD的值:
②若點P在x軸上,以點P、B、D為頂點的三角形與△AEB相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD的頂點B、C在x軸上,A、D在拋物線y=ax2+bx上,且y=ax2+bx的最大值是2,y=ax2+bx與x軸的正半軸的交點E的坐標是(2,0).
(1)求a,b的值;
(2)若矩形的頂點均為動點,且矩形在拋物線與x軸圍成的封閉區(qū)域內(nèi),試探索:是否存在周長為3的矩形?若存在,求出此時B點的坐標;若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在矩形ABCD中,點E是AD邊上一點,連接BE,且∠ABE=30°,BE=DE,連接BD.點P從點E出發(fā)沿射線ED運動,過點P作PQBD交直線BE于點Q.
(1)當點P在線段ED上時(如圖1),求證:BE=PD+
3
3
PQ;
(2)若BC=6,設PQ長為x,以P、Q、D三點為頂點所構(gòu)成的三角形面積為y,求y與x的函數(shù)關系式(不要求寫出自變量x的取值范圍);
(3)在②的條件下,當點P運動到線段ED的中點時,連接QC,過點P作PF⊥QC,垂足為F,PF交對角線BD于點G(如圖2),求線段PG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了順應市場要求,某市電子玩具制造公司技術部研制開發(fā)一種新產(chǎn)品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關系(即前t個月的利潤總和s和t之間的關系).根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標,求累積利潤s(萬元)與時間t(月)之間的函數(shù)關系式;
(2)求截止到幾月末公司累積利潤可達到6萬元?
(3)求第9個月公司所獲利潤是多少萬元?

查看答案和解析>>

同步練習冊答案