如圖,矩形的長是4cm,寬是3cm,如果將長和寬都增加xcm,那么面積增加ycm2
(1)求y與x的函數(shù)表達(dá)式;
(2)求當(dāng)邊長增加多少時(shí),面積增加8cm2
(1)由題意可得:(4+x)(3+x)-3×4=y,
化簡得:y=x2+7x;

(2)把y=8代入解析式y(tǒng)=x2+7x中得:x2+7x-8=0,
解之得:x1=1,x2=-8(舍去).
∴當(dāng)邊長增加1cm時(shí),面積增加8cm2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線y=-
3
3
x+
2
3
3
交x軸于點(diǎn)C,交y軸于點(diǎn)A.等腰直角三角板OBD的頂點(diǎn)D與點(diǎn)C重合,如圖A所示.把三角板繞著點(diǎn)O順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α<180°),使B點(diǎn)恰好落在AC上的B'處,如圖B所示.
(1)求圖A中的點(diǎn)B的坐標(biāo);
(2)求α的值;
(3)若二次函數(shù)y=mx2+3x的圖象經(jīng)過(1)中的點(diǎn)B,判斷點(diǎn)B′是否在這條拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知拋物線的對(duì)稱軸為直線x=4,該拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A、C坐標(biāo)為(2,0)、(0,3).
(1)求此拋物線的解析式;
(2)拋物線上有一點(diǎn)P,使以PC為直徑的圓過B點(diǎn),求P的坐標(biāo);
(3)在滿足(2)的條件下,x軸上是否存在點(diǎn)E,使得△COE與△PBC相似?若存在,求出E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點(diǎn)為A,B,點(diǎn)A的坐標(biāo)是(2,4),點(diǎn)B的橫坐標(biāo)是-2.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)D在線段AB上,過D作x軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG.記過C2頂點(diǎn)M的直線為l,且l與x軸交于點(diǎn)N.
①若l過△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1,2),求點(diǎn)N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=mx2+(3-m)x+m2+m交x軸于C(x1,0),D(x2,0)兩點(diǎn),(x1x2)且(x1+1)(x2+1)=5
(1)試確定m的值;
(2)過點(diǎn)A(-1,-5)和拋物線的頂點(diǎn)M的直線交x軸于點(diǎn)B,求B點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)P(a,b)是拋物線上點(diǎn)C到點(diǎn)M之間的一個(gè)動(dòng)點(diǎn)(含C、M點(diǎn)),△POQ是以PO為腰、底邊OQ在x軸上的等腰三角形,過點(diǎn)Q作x軸的垂線交直線AM于點(diǎn)R,連接PR.設(shè)△PQR的面積為S,求S與a之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的對(duì)稱軸是直線x=2,頂點(diǎn)A的縱坐標(biāo)為1,點(diǎn)B(4,0)在此拋物線上.

(1)求此拋物線的解析式;
(2)若此拋物線對(duì)稱軸與x軸交點(diǎn)為C,點(diǎn)D(x,y)為拋物線上一動(dòng)點(diǎn),過點(diǎn)D作直線y=2的垂線,垂足為E.
①用含y的代數(shù)式表示CD2,并猜想CD2與DE2之間的數(shù)量關(guān)系,請(qǐng)給出證明;
②在此拋物線上是否存在點(diǎn)D,使∠EDC=120°?如果存在,請(qǐng)直接寫出D點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平面直角坐標(biāo)系中三點(diǎn)A(2,0),B(0,2),P(x,0)(x<0),連接BP,過P點(diǎn)作PC⊥PB交過點(diǎn)A的直線a于點(diǎn)C(2,y)
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x取最大整數(shù)時(shí),求BC與PA的交點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個(gè)單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)直線y=
1
2
x+b(b<k)與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖1,在平面直角坐標(biāo)系中,將n個(gè)邊長為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上.現(xiàn)將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使得點(diǎn)B落到x軸的正半軸上(如圖2),設(shè)拋物線y=ax2+bx+c(a<0),如果拋物線同時(shí)經(jīng)過點(diǎn)O、B、C:
①當(dāng)n=3時(shí)a=______;
②a關(guān)于n的關(guān)系式是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案