【題目】如圖,某足球運動員站在點O處練習射門,將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數關系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.
(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數關系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
【答案】(1)足球飛行的時間是s時,足球離地面最高,最大高度是4.5m;(2)能.
【解析】試題分析:(1)由題意得:函數y=at2+5t+c的圖象經過(0,0.5)(0.8,3.5),于是得到,求得拋物線的解析式為:y=﹣t2+5t+,當t=時,y最大=4.5;
(2)把x=28代入x=10t得t=2.8,當t=2.8時,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能將球直接射入球門.
解:(1)由題意得:函數y=at2+5t+c的圖象經過(0,0.5)(0.8,3.5),
∴,
解得:,
∴拋物線的解析式為:y=﹣t2+5t+,
∴當t=時,y最大=4.5;
(2)把x=28代入x=10t得t=2.8,
∴當t=2.8時,y=﹣×2.82+5×2.8+=2.25<2.44,
∴他能將球直接射入球門.
科目:初中數學 來源: 題型:
【題目】對于二次函數y=-x2+2x,有下列四個結論:①它的對稱軸是直線x=1;②設y1=-+2x1,y2=-+2x2,則當x2>x1時,有y2>y1;③它的圖象與x軸的兩個交點是(0,0)和(2,0);④當0<x<2時,y>0.其中正確結論的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4.將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E、F,則線段B′F的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2-2x+m=0有兩個不相等的實數根.
(1)求實數m的最大整數值;
(2)在(1)的條件下,方程的實數根是x1,x2,求代數式+-的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com