【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.

(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;
(3)在運動過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請說明理由.

【答案】
(1)

證明:∵RT△ABC中,∠B=90°,∠A=60°,

∴∠C=90°﹣∠A=30°.

又∵在RT△CDF中,∠C=30°,CD=4t

∴DF= CD=2t,

∴DF=AE


(2)

解:∵DF∥AB,DF=AE,

∴四邊形AEFD是平行四邊形,

當AD=AE時,四邊形AEFD是菱形,

即60﹣4t=2t,解得:t=10,

即當t=10時,四邊形AEFD是菱形


(3)

解:四邊形BEDF不能為正方形,理由如下:

當∠EDF=90°時,DE∥BC.

∴∠ADE=∠C=30°

∴AD=2AE

∵CD=4t,

∴DF=2t=AE,

∴AD=4t,

∴4t+4t=60,

∴t= 時,∠EDF=90°

但BF≠DF,

∴四邊形BEDF不可能為正方形


【解析】(1)由已知條件可得RT△CDF中∠C=30°,即可知DF= CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四邊形ADFE是平行四邊形,若構(gòu)成菱形,則鄰邊相等即AD=AE,可得關(guān)于t的方程,求解即可知;(3)四邊形BEDF不為正方形,若該四邊形是正方形即∠EDF=90°,即DE∥AB,此時AD=2AE=4t,根據(jù)AD+CD=AC求得t的值,繼而可得DF≠BF,可得答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,EF分別是邊ABBC的中點,EPCD于點P,則∠FPC的度數(shù)為( )

A. 55° B. 50° C. 45° D. 35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】麒麟?yún)^(qū)第七中學現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面積?
(2)若每種植1平方米草皮需要300元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的邊長為6,點A、C分別在x軸,y軸的正半軸上,點D(2,0)在OA上,P是OB上一動點,則PA+PD的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】陳老師給42名學生每人買了一件紀念品,其中有:每支12元的鋼筆,每把4元的圓規(guī),每冊16元的詞典,共用了216元,則陳老師買了鋼筆支,詞典冊;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2mx2m20

1)求證:不論m為何值,該方程總有兩個實數(shù)根;

2)若x1是該方程的根,求代數(shù)式4m2+2m+5的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四個正方形拼接成的圖形中,以A1、A2、A3、…、A10這十個點中任意三點為頂點,共能組成個等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,OC是∠AOD的平分線,OE是∠BOD的平分線.

(1)若∠AOB=120°,則∠COE是多少度?
(2)若∠EOC=65°,∠DOC=25°,則∠BOE是多少度?

查看答案和解析>>

同步練習冊答案