【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;
(3)在運動過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請說明理由.
【答案】
(1)
證明:∵RT△ABC中,∠B=90°,∠A=60°,
∴∠C=90°﹣∠A=30°.
又∵在RT△CDF中,∠C=30°,CD=4t
∴DF= CD=2t,
∴DF=AE
(2)
解:∵DF∥AB,DF=AE,
∴四邊形AEFD是平行四邊形,
當AD=AE時,四邊形AEFD是菱形,
即60﹣4t=2t,解得:t=10,
即當t=10時,四邊形AEFD是菱形
(3)
解:四邊形BEDF不能為正方形,理由如下:
當∠EDF=90°時,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t+4t=60,
∴t= 時,∠EDF=90°
但BF≠DF,
∴四邊形BEDF不可能為正方形
【解析】(1)由已知條件可得RT△CDF中∠C=30°,即可知DF= CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四邊形ADFE是平行四邊形,若構(gòu)成菱形,則鄰邊相等即AD=AE,可得關(guān)于t的方程,求解即可知;(3)四邊形BEDF不為正方形,若該四邊形是正方形即∠EDF=90°,即DE∥AB,此時AD=2AE=4t,根據(jù)AD+CD=AC求得t的值,繼而可得DF≠BF,可得答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC的度數(shù)為( )
A. 55° B. 50° C. 45° D. 35°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】麒麟?yún)^(qū)第七中學現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面積?
(2)若每種植1平方米草皮需要300元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的邊長為6,點A、C分別在x軸,y軸的正半軸上,點D(2,0)在OA上,P是OB上一動點,則PA+PD的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】陳老師給42名學生每人買了一件紀念品,其中有:每支12元的鋼筆,每把4元的圓規(guī),每冊16元的詞典,共用了216元,則陳老師買了鋼筆支,詞典冊;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣mx﹣2m2=0.
(1)求證:不論m為何值,該方程總有兩個實數(shù)根;
(2)若x=1是該方程的根,求代數(shù)式4m2+2m+5的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,OC是∠AOD的平分線,OE是∠BOD的平分線.
(1)若∠AOB=120°,則∠COE是多少度?
(2)若∠EOC=65°,∠DOC=25°,則∠BOE是多少度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com