【題目】如圖,在正方形ABCD中,AB=4,P是線段AD上的動點(diǎn),PE⊥AC于點(diǎn)E,PF⊥BD于點(diǎn)F,則PE+PF的值為( 。

A.2
B.4
C.4
D.2

【答案】A
【解析】解:在正方形ABCD中,OA⊥OD,∠OAD=45°,
∵PE⊥AC,PF⊥BD,
∴四邊形OEPF為矩形,△APE是等腰直角三角形,
∴PF=OE,PE=BE,
∴PE+PF=BE+OE=OA,
∵AB=BC=4,
∴OA=AC=x4=2 ,
∴PE+PF=2
故選A.
【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,已知ADBC,B=90°,AB=7,AD=9,BC=12,在線段BC上任取一點(diǎn)E,連接DE,作EFDE,交直線AB于點(diǎn)F.

 。1)若點(diǎn)FB重合,求CE的長;(3分)

 。2)若點(diǎn)F在線段AB上,且AF=CE,求CE的長.(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x2+4x+10時,原方程應(yīng)變形為(  )

A.(x+2)23B.(x2)23C.(x+2)25D.(x2)25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩公司為“見義勇為基金會”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.

請你根據(jù)以上信息,提出一個用分式方程解決的問題,并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校假期由校長帶領(lǐng)該校三好學(xué)生去旅游,甲旅行社說若校長買全票一張則學(xué)生半價.乙旅行社說全部人六折優(yōu)惠若全票價是1200,

(1)若學(xué)生人數(shù)是20甲、乙旅行社收費(fèi)分別是多少?

(2)當(dāng)學(xué)生人數(shù)的多少時,兩家旅行社的收費(fèi)一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(3,4),點(diǎn)B為直線x=1上的動點(diǎn),設(shè)B(-1,y).

(1)如圖①,若△ABO是等腰三角形且AO=AB時,求點(diǎn)B的坐標(biāo);

(2)如圖②,若點(diǎn)Cx,0)且-1<x<3,BCAC垂足為點(diǎn)C;

①當(dāng)x=0時,求tan∠BAC的值;

②若ABy軸正半軸的所夾銳角為α,當(dāng)點(diǎn)C在什么位置時tanα的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式﹣x3y2﹣xy﹣5+3x4y2按x的升冪排列是( 。
A.﹣5﹣xy+0x2﹣x3y2+3x4y2
B.﹣5﹣xy+0x2+x3y2﹣3x4y2
C.﹣5﹣xy﹣x3y2+3x4y2
D.3x4y2﹣x3y2﹣xy﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:2000﹣2015=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法將二次三項(xiàng)式x2+4x﹣96變形,結(jié)果為( 。

A. (x+2)2+100 B. (x﹣2)2﹣100 C. (x+2)2﹣100 D. (x﹣2)2+100

查看答案和解析>>

同步練習(xí)冊答案