【題目】在直角三角形中,有一個銳角是另一個銳角的4倍,求這個直角三角形各個角的度數(shù).
【答案】解答:設(shè)設(shè)一個銳角為x度,則另一個銳角為4x度,
那么根據(jù)三角形內(nèi)角和定理:三角形內(nèi)角之和為180°,
所以x+4x+90°=180°,
x=18°,4x=72°,
答:三角分別為18°,72°,90°.
【解析】設(shè)一個銳角為x度,則另一個銳角為4x度,然后根據(jù)三角形的內(nèi)角和定理列方程求解即可.
【考點(diǎn)精析】掌握解直角三角形是解答本題的根本,需要知道解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)進(jìn)行了6輪投籃比賽,兩人的得分情況統(tǒng)計如下:
下列說法不正確的是( 。
A. 甲得分的極差小于乙得分的極差 B. 甲得分的中位數(shù)大于乙得分的中位數(shù)
C. 甲得分的平均數(shù)大于乙得分的平均數(shù) D. 乙的成績比甲的成績穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對稱軸是直線l,l與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對稱軸l上的一個動點(diǎn),求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點(diǎn)E的坐標(biāo); 若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA在x軸上,O與原點(diǎn)重合,OA=1,OC=2,點(diǎn)D的坐標(biāo)為(2,0),則直線BD的函數(shù)表達(dá)式為( 。.
A.y=-x+2
B.y=-2x+4
C.y=-x+3
D.y=2x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O , 點(diǎn)E是BC的中點(diǎn) . 若OE=3cm , 則AB的長為( 。
A.3cm
B.6cm
C.9cm
D.12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)的門票價格如表:
購票人數(shù)/人 | 1~50 | 51~100 | 100以上 |
每人門票價/元 | 12 | 10 | 8 |
某校七年級(1)、(2)兩班計劃去游覽該景點(diǎn),其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨(dú)購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團(tuán)體購票,則只需花費(fèi)816元.
(1)兩個班各有多少名學(xué)生?
(2)團(tuán)體購票與單獨(dú)購票相比較,兩個班各節(jié)約了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有13位同學(xué)參加學(xué)校組織的才藝表演比賽,已知他們所得的分?jǐn)?shù)互不相同,共設(shè)7個獲獎名額,某同學(xué)知道自己的比賽分?jǐn)?shù)后,要判斷自己能否獲獎,在這13名同學(xué)成績的統(tǒng)計量中只需知道一個量,它是____.(填“眾數(shù)”“方差”“中位數(shù)”或“平均數(shù)”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com