【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說明理由.
【答案】(1)拋物線的解析式為:y=﹣x2﹣2x+3;(2);(3)最大值為1,此時(shí)點(diǎn)E的坐標(biāo)為(﹣2,2).
【解析】(1)根據(jù)函數(shù)圖象經(jīng)過的三點(diǎn),用待定系數(shù)法確定二次函數(shù)的解析式即可;
(2)根據(jù)BC是定值,得到當(dāng)PB+PC最小時(shí),△PBC的周長最小,根據(jù)點(diǎn)的坐標(biāo)求得相應(yīng)線段的長即可;
(3)設(shè)點(diǎn)E的橫坐標(biāo)為m,表示出E(m,2m+6),F(xiàn)(m,﹣m2﹣2m+3),最后表示出EF的長,從而表示出S于m的函數(shù)關(guān)系,然后求二次函數(shù)的最值即可.
解:(1)由題意可知: ,解得: ,
∴拋物線的解析式為:y=﹣x2﹣2x+3;
(2)∵△PBC的周長為:PB+PC+BC
∵BC是定值,
∴當(dāng)PB+PC最小時(shí),△PBC的周長最小,
∵點(diǎn)A、點(diǎn)B關(guān)于對(duì)稱軸I對(duì)稱,
∴連接AC交l于點(diǎn)P,即點(diǎn)P為所求的點(diǎn)
∵AP=BP
∴△PBC的周長最小是:PB+PC+BC=AC+BC
∵A(﹣3,0),B(1,0),C(0,3),
∴AC=3,BC=;
(3)①∵拋物線y=﹣x2﹣2x+3頂點(diǎn)D的坐標(biāo)為(﹣1,4)
∵A(﹣3,0)
∴直線AD的解析式為y=2x+6
∵點(diǎn)E的橫坐標(biāo)為m,
∴E(m,2m+6),F(m,﹣m2﹣2m+3)
∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3
∴S=S△DEF+S△AEF=EFGH+EFAC=EFAH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;
②S=﹣m2﹣4m﹣3
=﹣(m+2)2+1;
∴當(dāng)m=﹣2時(shí),S最大,最大值為1
此時(shí)點(diǎn)E的坐標(biāo)為(﹣2,2).
“點(diǎn)睛”此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的最值,根據(jù)點(diǎn)的坐標(biāo)表示出線段的長是表示出三角形的面積的基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a , b滿足a-b=1,a2-ab+2>0,當(dāng)1≤x≤2時(shí),函數(shù)y= (a≠0)的最大值與最小值之差是1,求a的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由邊長為“1”的小正方形按一定規(guī)律組成,其中第1個(gè)圖形有9個(gè)邊長為1的小正方形,第2個(gè)圖形有14個(gè)邊長為1的小正方形…則第10個(gè)圖形中邊長為1的小正方形的個(gè)數(shù)為( )
A.72
B.64
C.54
D.50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC的三個(gè)頂點(diǎn)的橫坐標(biāo)乘以﹣1,縱坐標(biāo)不變,則所得圖形( )
A. 與原圖形關(guān)于y軸對(duì)稱
B. 與原圖形關(guān)于x軸對(duì)稱
C. 與原圖形關(guān)于原點(diǎn)對(duì)稱
D. 向x軸的負(fù)方向平移了一個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的三角形是銳角三角形、直角三角形還是鈍角三角形.
(1)△ABC中,∠A=30°,∠C=∠B;
(2)三個(gè)內(nèi)角的度數(shù)之比為1:2:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列依次給出的點(diǎn)的坐標(biāo)(0,3),(1,1),(2,﹣1),(3,﹣3),…,依此規(guī)律,則第6個(gè)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程x2﹣mx+n=0沒有實(shí)數(shù)解,則拋物線y=x2﹣mx+n與x軸的交點(diǎn)有( 。
A.2個(gè)B.1個(gè)C.0個(gè)D.不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com