【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖像分別交軸、軸于兩點.過點的直線交軸正半軸于點,且點為線段的中點.
(1)求直線的表達式;
(2)如果四邊形是平行四邊形,求點的坐標(biāo).
【答案】(1);(2).
【解析】
(1)根據(jù)直線的解析式求得點、的坐標(biāo),然后由已知條件“點為線段的中點”求得點的坐標(biāo);最后,利用待定系數(shù)法求直線的關(guān)系式;
(2)如圖1,作輔助線構(gòu)建全等三角形,然后根據(jù)全等三角形的對應(yīng)邊相等、線段間的和差關(guān)系推知、的長度,即點的坐標(biāo).
解:(1)函數(shù)的圖象分別交軸、軸于、兩點,
,,
點為線段的中點,
.
設(shè)直線的表達式為.
,
解得:,
故直線的表達式為.
(2)如圖1,四邊形是平行四邊形,
且,且,
∴,
過點作軸的垂線,垂足為.
在和中,
,
∴,
,,
,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示OA、BA分別表示甲、乙兩名學(xué)生在同一直線上沿相同方向的運動過程中,路程S(米)與時間t(秒)的函數(shù)關(guān)系圖象,試根據(jù)圖象回答下列問題.
(1)出發(fā)時,乙在甲前面多少米處?
(2)在什么時間范圍內(nèi)甲走在乙的后面?在什么時間他們相遇?在什么時間內(nèi)甲走在乙的前面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于G,交BE于H.下列結(jié)論:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正確結(jié)論的序號是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示經(jīng)過原點,給出以下四個結(jié)論:①abc=0,②a+b+c>0,③2a>b,④4ac﹣b2<0;其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點的坐標(biāo)為(,1),下列結(jié)論:①c>0;②b2﹣4ac>0;③a+b=0;④4ac﹣b2>4a,其中錯誤的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中說明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣bx+c交x軸于點A(1,0),交y軸于點B,對稱軸是x=2.
(1)求拋物線的解析式;
(2)點P是拋物線對稱軸上的一個動點,是否存在點P,使△PAB的周長最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+x+4的對稱軸是直線x=3,且與軸相交于A、B兩點(B點在A點的右側(cè)),與軸交于C點.
(1)A點的坐標(biāo)是 ;B點坐標(biāo)是 ;
(2)直線BC的解析式是: ;
(3)點P是直線BC上方的拋物線上的一動點(不與B、C重合),是否存在點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積,若不存在,試說明理由;
(4)若點M在x軸上,點N在拋物線上,以A、C、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com